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Abstract

An extensive grid of binary evolutionary tracks has been computed using the MESA code to
study irradiated X-ray binary systems. Non-irradiated X-ray binaries have been well studied,
but this thesis shows how irradiation affects the evolution of low- and intermediate mass X-
ray binaries (LMXBs and IMXBs) and their long-term secular average properties. Since the
donor star loses some of its mass to the neutron star, an accretion disk is formed around
the neutron star and X-rays are emitted. Some of this radiation is intercepted by the donor
star and this in turn modifies its physical properties. A model that includes the geometry
of the binary system and a Monte-Carlo simulation to determine the penetration depth of
X-rays has been developed. For instance, assuming an efficiency factor as low as 5% for the
irradiation flux, the bloating of the donor star can lead to irradiation cycles in which mass
transfer surpasses the Eddington limit, which means that the neutron star will accrete less
mass. If irradiation is not considered, neutron stars can become as massive as 2.5M�. But if
irradiation is included, they generally accrete less mass and their masses are often less than
2.0M�. However, irradiation does not have a significant effect on the orbital period at which
the system becomes detached (e.g., formation of a millisecond pulsar). Therefore, irradiation
is a promising mechanism to explain the observed properties of binary millisecond pulsars.
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Chapter 1

Introduction

In the 1960s, the first X-ray satellites were sent in orbit around the Earth and they led to the
discovery of the first X-ray sources such as Scorpius X-1 and Cygnus X-1. Then, astronomers
observed the X-ray sources in the optical band and they only found faint old stars. Thus,
they concluded after some time that the X-rays would be the result of matter accretion
onto compact objects such as black-holes and neutron stars. Such objects are now called
X-ray binary systems, where a companion star and a compact star orbit in close proximity,
emitting X-rays when mass is transferred from the former to the latter.

X-ray binary systems containing non-degenerate stars can be separated into three classes
depending on the mass of the companion. For a low mass companion star (M . 2.2M�),
one refers to a low mass X-ray binary (LMXB), and equivalently, one refers to intermediate
and high mass X-ray binaries (IMXBs and HMXBs) for companions in the ranges 2.2M� .
M . 10M� and M & 10M�, respectively.

This thesis focuses on LMXBs and IMXBs, and more specifically, on their evolution.
The field of LMXB evolution began in the early 1970s and has been thriving since then
(e.g., [40, 134, 177, 71, 105, 127, 128, 17, 65, 122, 119, 106, 14]). One may be interested in
understanding the formation of LMXBs, but this work focuses on the subsequent portion
of the evolution, that is when mass is transferred from the companion star to the compact
object. In this work, it will be assumed that the compact object is a neutron star. Studying
X-ray binary systems with black-holes requires one to consider different physics that will not
be discussed here.

Our understanding of the evolution of X-ray binary systems is largely due to numerical
simulations which allow us to study the possible evolutionary paths of X-ray binaries. In
recent years, the increasing power of computer clusters allowed theorists to investigate the
evolution many X-ray binaries. For example, Podsiadlowski et al. [122] computed the
evolution of about 150 LMXBs and IMXBs, and less than ten years later, Lin et al. [90]
computed the evolution of about 42,000 systems. This thesis presents evolutionary grids of
4,200 systems (one tenth of Lin et al.’s density), where the initial conditions are taken in the
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CHAPTER 1. INTRODUCTION 6

two-dimensional parameter space Porb,i −M2,i (initial orbital period and initial companion
star mass). However, this thesis does not show the results of only one evolutionary grid, but
the results of 11 grids of 4,200 systems, where each grid changes the value of its additional
parameters such asM1,i, η, and βmax (the initial neutron star mass, the irradiation efficiency,
and the maximummass-transfer fraction). The meaning of these parameters will be discussed
thoroughly in this thesis.

This thesis is separated in two parts. The first part focuses on the theory of X-ray
binary systems such as stellar evolution, the mechanics of close binaries, and neutron star
properties. Also, it discusses the standard evolution of LMXBs and IMXBs. The second
part introduces the physics of self-induced X-ray irradiation. Chapter 3 discusses the model
developed in this thesis to consider the effects of X-ray irradiation in the evolution of X-
ray binary systems. Then, Chapter 4 shows new evolutionary grids including the effects of
self-induced irradiation. Finally, the results are summarized in Chapter 5.



Part I

Theory and Background
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Chapter 2

X-ray Binary Systems

The research results contained in this thesis concern compact binary systems consisting
of a degenerate primary (a neutron star) and a main-sequence (or post-main sequence)
companion. From now on, the companion star will be called the donor star. The origin of this
name will soon become clear. In order to successfully model X-ray binary systems, one needs
a stellar evolution code that computes the evolution of the donor star, the evolution of the
neutron star, and the evolution of the system as a whole, i.e. that considers the interactions
between the two stars. In this chapter, the theory of stellar evolution is explored and the
evolution computer code is discussed. The theory behind binary evolution is developed and
neutron star properties relevant to X-ray binary evolution are explored. Finally, the standard
evolution of LMXBs and IMXBs is analyzed.

It should be noted that Sections 2.1 and 2.2 borrow heavily from the previous work of
Dubeau, Goliasch, and Maisonneuve ([37, 50, 99], and references therein). Due to the very
nature of the subjects discussed, some of the descriptions differ only moderately.

2.1 Stellar Evolution
The theory of stellar structure and evolution studies the physical processes in stars. It is
an attempt to model the variation and distribution of the physical and chemical parameters
such as density, pressure, temperature, radiation, and chemical composition of stars over
time. There are five basic equations of stellar structure and evolution that emerge from
the theory adopted for the stellar models used in this thesis. Each of these equations will
be developed and explained in the subsequent sections. In brief, these equations form a
complete set of coupled partial differential equations that govern the structural evolution of
the stellar models. Each equation relates to one of the following: mass continuity, hydrostatic
equilibrium, energy conservation, energy transport, and the temporal evolution of chemical
composition.
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CHAPTER 2. X-RAY BINARY SYSTEMS 9

An important note should be made about the complexity and difficulty of modeling the
interior of stars and their physical processes. For this reason, some fundamental simplifying
assumptions have to be made when developing such a model. Hence, for the remainder of the
discussion in this chapter (and most of this thesis) the assumption is made that stars can
be approximated as spherically symmetric and non-rotating. Additionally, the distortion
effects of close companions are neglected and so are the consequences of the presence of
magnetic fields. Similarly, the density, pressure, and chemical composition are assumed to
be distributed radially. This set of assumptions allows the models generated to be described
by only one “spatial” coordinate and the variable time, t.

Another important point is that for computational purposes, it is desirable to use what
is called the Lagrangian approach when attempting to solve the differential equations (DE’s)
of stellar structure and evolution, rather than the classical Eulerian scheme. The Eulerian
scheme uses fixed points in space as a reference for the independent variable. For stars,
this implies following the changes in stellar properties at fixed points a distance r from
the center of the star over time. The Lagrangian approach, on the other hand, is a clas-
sical hydrodynamic approach in which the reference frame is attached to differential fluid
elements. In the case of a spherically symmetric star, these fluid elements then represent
differential spherical shells (of mass dm) at a radial distance r from the center. Each mass
shell can thus be evaluated as a diffusive, thermodynamic system changing over time. In
brief, while both methods use time (t) as one of the independent variables, the Eulerian
scheme uses r as the second independent variable, whereas the Lagrangian approach treats
m as the second independent variable. The following sections will always conclude with the
Lagrangian description of each equation. It should be noted, however, that the expression
for the change of the same physical quantity with respect to time using the Eulerian method
and the Lagrangian method are interchangeable.

2.1.1 Equations of Stellar Structure and Evolution

2.1.1.1 Mass Continuity

For a spherically symmetric star one can write the mass contained within a differential
spherical shell a radial distance r from the center as

dm = 4πr2ρ dr , (2.1)

where ρ is the density within this differential mass shell. With the requirement of mass
continuity one can rewrite the above equation as

∂m

∂r
= 4πr2ρ . (2.2)
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This equation is one of the five equations of stellar structure and evolution, and it is most
often termed “equation of mass continuity”. Clearly, Equation 2.2 gives the classical Eulerian
description of mass continuity (using r as the independent variable). To express mass conti-
nuity with m as the independent variable (Lagrangian scheme), one simply inverts Equation
2.2 to obtain

∂r

∂m
=

1

4πr2ρ
. (2.3)

Note that time (t), the second independent variable, does not enter explicitly into the equa-
tion of mass continuity. Also note that time is implicitly being held constant in the derivative
∂r
∂m

.

2.1.1.2 Hydrostatic Equilibrium

The notion of hydrostatic equilibrium of a mass element describes the situation where all
forces acting on that mass element cancel out. Given this constraint and the assumptions
applied (gaseous spherical matter without rotation, magnetic fields, or distortion due to
a companion), the only forces acting on each particle are due to gravity and the pressure
gradient. To derive expressions for these forces, some spherical shell of mass dm and thickness
dr at distance r from the center of the star shall be considered. The differential gravitational
force per unit area

(
dFg
A

)
experienced by such a shell is

dFg
A

= −dmgshell
A

= −gρdr . (2.4)

The net differential force per unit area due to pressure (dFp) is the difference of the pressure
on the exterior (Pe) and the interior (Pi) of the shell:

dFp
A

= Pi − Pe = −
(
∂P

∂r

)
dr . (2.5)

Imposing the condition of hydrostatic equilibrium (dFg = dFp), one can equate Equations
2.4 and 2.5 to get (

∂P

∂r

)
= −gρ = −Gm

r2
ρ , (2.6)

or expressed in the Lagrangian scheme(
∂P

∂m

)
= − Gm

4πr4
, (2.7)

where G is Newton’s Gravitational Constant.
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Equation 2.7 (or Equation 2.6 for the Eulerian scheme) is the stellar structure equation
termed “equation of hydrostatic equilibrium”.

2.1.1.3 Energy Conservation

Energy conservation with respect to a star can be put in this way: the total energy emitted
(per unit of time) from a star’s surface (luminosity) must be compensated by the total change
in energy (per unit of time) in the interior of the star. A similar statement can be made
regarding a spherical shell of mass dm within the star that encloses the fractional mass m.
If the net energy per second flowing into or out of the shell is defined by Lm, then ∂Lm

∂m
is the

specific power gradient transferred through this shell. The value of ∂Lm
∂m

is simply the sum
of the different specific energy generation rates (and losses):

ε - energy generation rate of nuclear energy (generated within the shell per unit mass per
unit time)

ν - energy loss rate due to escaping neutrinos (generated by nuclear reactions and plasma
effects)

ζ - energy generation/loss rate due to changes in the thermal state of the matter

The changes in the thermal state of the matter ζ are related to the temperature (T ) and
the partial derivative of the “specific” entropy (per unit of mass) S of the stellar matter
with respect to time by ζ = −T ∂S

∂t
. The equation of stellar structure addressing energy

conservation can thus be written as

∂Lm
∂m

= ε− ν − T ∂S
∂t

. (2.8)

2.1.1.4 Energy Transport

There are three main processes available to a star that allow it to transfer the energy gen-
erated in the interior of the star to its outer layers: conduction, convection, and radiation.
The processes are similar in the sense that certain “particles” (photons in the case of radia-
tion, largely degenerate electrons for conduction, and “blobs” of matter during convection)
are exchanged between the hotter and cooler layers of the star. The mean free path of the
particles, together with the temperature gradient of the surroundings, play a decisive role in
the mode of energy transport. Thus, the equation for the energy transport within a star will
be written with a condition for the temperature gradient necessary for the required energy
flow. The temperature gradient with respect to pressure inside a star can be written as

∇ =
∂ lnT

∂ lnP
. (2.9)
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Rewriting the above equation slightly yields

∇ = P
T

(
∂T
∂m

) (
∂m
∂P

)
∴ ∂T

∂m
= T

P

(
∂P
∂m

)
∇ ,

(2.10)

which renders, after substituting in Equation 2.7, the equation of stellar structure concerned
with energy transport:

∂T

∂m
= − GmT

4πr4P
∇ . (2.11)

The temperature gradient (∇) that governs the above equation depends on the dominant
mode of energy transport for the particular location in the star. The gradient to be used is
either a combination of the radiative and conductive gradient ∇rad/cond (since the radiative
and conductive modes can operate simultaneously) or the convective gradient ∇con. The
latter applies to either efficient (adiabatic) or inefficient (superadiabatic) convection. The
latter can be viewed as the leakage and transport of radiation from within the convective
bubbles.

Radiation and Conduction
Radiative energy transport results from electromagnetic waves (photons) transferring energy
between layers in the star. During conductive energy transport, on the other hand, degener-
ate electrons are the cause of the transfer of energy (very much like heat that is transferred
very efficiently in metals). Since both of these modes can take place simultaneously, the
“conductivities” of each can be added together. This is achieved by combining their opacities
κ in the following way:

1

κ
=

1

κcond
+

1

κrad
. (2.12)

This is akin to saying that the “conductivities” add linearly. The combined temperature
gradient due to radiation and conduction can then be written as

∇rad/cond =
3

16πacG

κLmP

mT 4
, (2.13)

where c is the speed of light in vacuum and a is the radiation constant. The combined opacity
κ is the Rosseland mean absorption coefficient expressed in units of cm2/g. It should be noted
that the conductive energy transport is negligible in most regions of a star since the mean
free path of photons is much larger than that of electrons. However, conduction becomes
important in dense degenerate regions (the interior of evolved stars and white dwarfs) and,
thus, must be accounted for appropriately.
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Convection
Convective energy transport is the exchange of energy between hotter and cooler layers of
the star through macroscopic mass elements (or “bubbles” of matter). During convection,
hotter bubbles move towards less dense regions and dissolve, delivering their excess of heat to
their new surroundings. Similarly, cooler bubbles descend into lower layers. This turbulent
mixing of stellar matter is an extremely efficient mode of energy transport. It occurs when
the temperature gradient of a region becomes comparable with its adiabatic gradient and
“blobs” become unstable against convection and begin to rise.

To simplify the complicated and turbulent motion of the convective bubbles a mixing
length theory was introduced by Böhm-Vitense [20]. According to her model, convection is
treated as the motion of vertically rising bubbles (much like the hot bubbles in a boiling
pot of water). Assuming efficient convection (no heat exchange of the bubbles with their
surroundings during their rise), the process is adiabatic. In this case, the convective gradient
is almost exactly equal to the adiabatic gradient. Thus,

∇con = ∇ad , (2.14)

where the adiabatic gradient is defined as ∇ad =
(
∂ lnT
∂ lnP

)
s
, and hence we have

∇con =

(
∂ lnT

∂ lnP

)
s

. (2.15)

As stated before, the dominating mode of energy transport (radiation/conduction or
convection) for a given layer in a star determines which gradient to substitute into Equa-
tion 2.11. Under the assumption that the chemical gradient is negligible, the determination
of the dominant mode is thus done by comparing the value of the radiative/conductive
gradient (Equation 2.13) of that layer with its adiabatic gradient (Equation 2.15). A radia-
tive/conductive gradient lower than the adiabatic gradient (∇rad/cond < ∇ad) implies that
radiation is more efficient in transferring energy across that layer; otherwise, the layer is
unstable against convection. In summary, Equation 2.11 can thus be rewritten as:

∂T

∂m
=


− 3κ

64π2acr4

(
Lm
T 3

)
for ∇rad/cond < ∇ad (radiation)

− GMT
4πr4P

(
∂ lnT
∂ lnP

)
s

for ∇rad/cond ≥ ∇ad (efficient convection)
. (2.16)

2.1.1.5 Temporal Evolution of Chemical Composition

As nuclear reactions take place in a particular region of a star, certain species of atoms
are transformed into new ones. Hence, the chemical composition of that region changes
over time. On the whole, the chemical composition of the entire star changes through this
process. If one denotes the mass fraction of a particular species i by Xi, then one can write
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Xi = Xi(m, t), where m is the total mass of the region (0 < m ≤Mstar). The mass fraction
of a particular species with nuclear mass mi is related to its total particle number per unit
volume (ni) by

Xi(m, t) =
mini
ρ

, (2.17)

where ρ is the mass density. It should be noted that the sum over all mass fractions must
always be equal to unity (

∑
i

Xi = 1).

The different species that stars are composed of range through the isotopes of many
different (mostly ionized) atoms such asH, He, Li, Be, B, C, N , O, [...]. The most abundant
species by far are hydrogen (H) and helium (He), and thus the use of the following definitions
with regard to the various mass fraction become useful: X = XH , Y = XHe, and Z = “the
rest” = 1−X − Y .

Changes in Mass Fraction in Non-convective Regions
The change in the abundance of a species over time in a region where no mixing takes

place is solely governed by the reactions that create the particular species and by the number
of reactions destroying it. This change in the abundance of a species i over time can be
expressed in terms of its chemical mass fraction Xi by

∂Xi

∂t
=
∑
K

∈Ki
QKi

−
∑
K′

∈K′ i
QiK

′
, (2.18)

where ∈Ki and ∈K′ i are the energies of the Kth reaction that contributes to the creation of
the species i and the destruction of the species i, respectively. QKi is the energy generated
when one unit mass of type i is transformed into species i during the Kth reaction. Similarly,
QiK′ is the energy generated in the destruction of one mass unit of type i into type K ′ .

Changes in Mass Fraction in Convective Regions
In convective zones, the continuous mixing due to the turbulent flow of rising and sinking

“blobs” of matter causes the chemical composition to be homogeneous throughout the entire
convective region. Hence, it is not sufficient to treat the change in chemical composition
locally; rather, an averaging over infinitesimal increments dm across the entire convective
zone becomes necessary. Equation 2.18 therefore becomes

∂Xi

∂t
=

∫
conv zone

(∑
K

∈Ki
QKi

−
∑

K′
∈K′ i
QiK′

)
dm∫

conv zone
dm

. (2.19)

A discontinuity in
∂Xi

∂t
might arise on the boundary between two adjacent convective shells.

However, by computing changes in the mass fraction for each species over the entire region
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one can simply extract Xi for that particular layer. Equation 2.19 thus represents an entire
system of equations handling the abundance of every element simultaneously.

As mentioned at the beginning of this chapter, the equations discussed in the preceding
sections (Equations 2.7, 2.3, 2.8, 2.11, and 2.18/2.19) form, when combined, a complete set
of coupled first-order partial differential equations:

∂r

∂m
=

1

4πr2ρ
, (2.20)

∂P

∂m
= − Gm

4πr4
, (2.21)

∂Lm
∂m

= ε− ν − T ∂S
∂t

, (2.22)

∂T

∂m
= − GmT

4πr4P
∇ , (2.23)

∂Xi

∂t
=
∑
K

∈Ki
QKi

−
∑
K′

∈K′ i
QiK′

. (2.24)

They govern the structural evolution of the stellar models used for this work.
To numerically solve these equations, the differential (instantaneous) rates of change

have to be replaced by discrete differences (∂ →4). Thus, the following system of algebraic
difference equations must be solved:

∆r =
1

4πr2ρ
∆m, (2.25)

∆P = − Gm
4πr4

∆m, (2.26)

∆Lr =∈ −T ∆S

∆t
∆m, (2.27)

∆T = − GmT

4πr4P
∇∆m, (2.28)

∆Xi =

(∑
K

∈K
QKi

−
∑

K′

∈K′
QiK′

)
∆t . (2.29)

It is this set of equations that governs the structure and evolution of the stellar models
computed for this work.
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2.1.2 The MESA Code

In the previous section, one saw the basics of stellar evolution and its equations. Now, in
order to solve Equations 2.25, 2.26, 2.27, 2.28 and 2.29, one needs to write a computer code
together with some input physics. Indeed, in order to produce meaningful and physical
results when attempting to solve the equations of stellar structure and evolution (presented
in Section 2.1), various additional information is required. In fact, when examining the
equations of stellar structure and evolution (Equations 2.25 through 2.29), it becomes evident
that the system of five equations contains fourteen (or more) variables (“unknowns”). They
are time (t),mass (m), radius (r), temperature (T ), pressure (P ), luminosity (L), density (ρ),
opacity (κ), entropy (S), energy generation/loss rates (ε, ν), the adiabatic gradient (∇ad),
chemical composition (Xi), and the amount of energy released (per unit of mass) during
nuclear reactions (Qik). Choosing time and mass as the independent variables (Lagrangian
approach) still leaves eleven unknowns (or more depending on the number of species i that are
considered), but only five equations. Consequently, seven or more equations (or constraints)
are necessary to allow the stellar structure equations to be solved. These equations are
provided by what is called “input physics” (or auxiliary equations). However, the input
physics generally do not consist of analytic equations, but provide the necessary relationships
through numerical data in tables. This data can be categorized into three main groups: the
equation of state, opacities, and nuclear reactions. The equation of state (EOS) provides
relationships between ∇ad, ρ, S, T , and P . The data on opacities provides the connection
between ρ and T with κ. Information on nuclear reactions reveals the relationship between
ε, ν, ρ, and T as well as provides data on Qik. Additionally, all three categories include
dependencies on the chemical composition (Xi).

The MESA (Modules for Experiments in Stellar Astrophysics) computer code is the stellar
evolution code that is used to produce the results of this thesis. It has been developed by
Paxton et al. [118] and it includes all the necessary input physics as well as modern numerical
methods to solve for the evolution of a star efficiently. The following paragraphs introduce
particularities of the MESA code. However, there are many details that are not discussed here.
See Paxton et al. [118] for more details.

The MESA code makes use of several common Fortran libraries for interpolation, solving
linear and non-linear equations, solving differential equations, etc. Furthermore, most of the
MESA code, entirely written in Fortran, uses the power of parallel programming in order to
minimize the computing time. This is particularly useful with modern computer clusters
such as the RQCHP’s Mammouth-parallel II (the computer cluster used to produce the
results of this thesis), which has processors with 24 cores.

The MESA code uses the OPAL equation of state tables from Rogers & Nayfonov [140]
and the SCVH tables from Saumon et al. [145] as well as the HELM and PC equations of
state (Timmes & Swesty [166] and Potekhin & Chabrier [125], respectively). See Paxton et
al. [118] for more details on how these equations of state are used. The other input physics
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Figure 2.1: Shell (or cell) structure of the MESA code (taken from Paxton et al. [118]).

that are used in the MESA code are the opacities, the thermonuclear and weak reactions, and
the nuclear reaction networks, all of which come from many different sources (see Paxton et
al. [118], and references therein).

It is useful to note at this point that the equations of state mentioned above allow for
different initial stellar metallicities. Note that the LMXBs that are studied in this thesis can
be separated in two categories: the ones observed in the galactic plane and the ones observed
in globular clusters. This thesis will only focus on the LMXBs observed in the galactic plane.
Thus, the donor star will always begin its evolution as a zero aged main sequence star (ZAMS)
with a generic metallicity of Z = 0.02. On the other hand, globular clusters are composed of
very old stars, so they have much lower metallicities. It is important to note that changing
the metallicity modifies the evolution of LMXBs (see Nelson et al. [106]).

Note that the MESA code is one-dimensional and spherically symmetric. It divides the star
into hundreds or thousands shells, numbered from one at the surface and increasing inward
(see Figure 2.1). Then, at each time step, the code simultaneously solves the entire set of
partial difference equations (see the end of Section 2.1.1) for each shell, from the surface to
the core.

From one time step to another, the MESA code adjusts its mesh, i.e. it modifies the
position and the number of shells into which the star is divided. The MESA code is built such
that the mesh adjusts itself to facilitate convergence to a solution, which depends on the
complexity of nuclear burning, gradients of state variables (such as ρ, T , R), composition,
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etc. Also, it selects time steps that minimizes the computational time, but that adjusts itself
in order to account for relative changes in state variables. That way, for example, if the
density of a particular shell has increased too much from one step to another, the code will
shorten the time step to minimize the change in density. Again, for more details on how this
is handled numerically, see Paxton et al. [118].

The MESA code handles convection and superadiabacity following the mixing length theory
of convection as presented by Cox & Giuli [31]. However, since it obviously does not perform
three-dimensional hydrodynamical calculations for the convection, it has to account for the
hydrodynamical mixing instabilities at convective boundaries using a parametric model.
This is called convective overshoot mixing. Paxton et al. [118] follow Herwig [61] and treat
overshooting as decaying exponentially with radial distance, i.e. DOV ∝ e−z, where DOV is
the overshoot mixing diffusion coefficient and z is the distance in the radiative layer away
from the point where overshoot occurs. Although Herwig’s [61] model may be suitable to
AGB stars (on the asymptotic giant branch), it is not clear that this is really the physically
correct treatment in other situations. In fact, it is believed by some researchers to be highly
inaccurate (Ph. Podsiadlowski 2010, private communication). A more standard treatment
is to use a Heaviside function,

DOV =

{
D0γ r0 < r < r0 + rovershoot

0 elsewhere
, (2.30)

where
D0 =

vc,oΛ

3
, (2.31)

r0 = f0HP , (2.32)

and
rovershoot = fHP , (2.33)

where the MESA code computes the convective velocity (vc,0), the mixing length (Λ), and the
pressure scale height (HP ). Also, the user has to supply the overshoot step fraction (γ) as
well as the parameter f0 and f , which indicate what fraction of the pressure scale height
above the location where ∇ad = ∇rad is convective overshooting going to occur. For this
thesis, we use the values of γ = 0.25 (J. Lin 2010, private communication), and f0 = 0.05 and
f = 0.30 (B. Paxton 2010, private communication). Thus, in this convective overshooting
region, standard mixing length theory is applied with a diffusion coefficient DOV .

2.2 Mechanics of Close Binaries
To simplify the discussion on the mechanics of close binary systems a few central assumptions
must be made. These assumptions are taken to be valid throughout this section. The first
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main assumption is that the orbit is approximately circular. In addition, the donor star’s
rotation is taken to be synchronized with its orbit. This situation is often referred to as
“phase-locked”. Those first two assumptions are well justified by the fact that the neutron
star has a strong tidal interaction with the donor star. For example, for a 1M� donor star
and a 1.4M� neutron star with an orbital period of 15 hours, the synchronization time would
be of the order of 107 years ([63]). Third, the mass of each star is assumed to be distributed
such that it can be approximated by a point mass at the center of the corresponding star.
Note that throughout the rest of this thesis, variables with index 1 are referring to the neutron
star and variables with index 2 are referring to the donor star. Note also that derivatives
with respect to time will often be represented by dots, i.e. ˙≡ d

dt
.

2.2.1 Roche Lobe Geometry

If one assumes the neutron star as well as the donor to be centrally condensed, then they can
be approximated by gravitating point sources. Certainly valid for the compact neutron star,
the approximation also holds for the donor, considering that the majority of mass in stars
is usually concentrated near central regions (and that the equipotential surfaces are roughly
spherical). Applying this assumption allows tidal effects and rotational distortions on the
stars to be neglected when calculating their gravitational potential. Taking such effects into
account would make the subsequent Roche lobe calculations extremely complex since a time-
varying potential would need to be considered. In summary, the model used in this work
describes the potential field of a binary system with circular orbits in which each component
may be treated as a point mass. To illustrate such a potential, a co-rotating Cartesian
coordinate system with the origin placed on the center of mass of the neutron star, the z-axis
perpendicular to the orbital plane, and the x-axis pointing towards the donor is introduced.
The total potential can then be summarized by adding the gravitational potential due to
each star and the fictitious centrifugal contribution:

Φ = Φgrav + Φcentr . (2.34)

The gravitational potential energy of a test-particle a distance r away from a single point
mass M is simply −GM

r
. The gravitational potential at any position P (x, y, z) for the two

masses is thus

Φgrav = −

(
GM1

(x2 + y2 + z2)
1
2

+
GM2

((x− a)2 + y2 + z2)
1
2

)
, (2.35)

where a is the orbital separation of the system.
The centrifugal potential of a test-particle a perpendicular distance r⊥ away from the

axis of rotation with angular velocity ω is given by −1
2
(ωr⊥)2. For the two-body setup given
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above, one has to take r⊥ to be the distance from the center of mass of the binary (at
M2

(M1+M2)
a = µa). Hence,

Φcentr = −1

2
ω2((x− µa)2 + y2) , (2.36)

with the angular velocity given by ω2 = G(M1+M2)
a3

. The full potential can thus be written as:

Φ = − GM1

(x2 + y2 + z2)
1
2

− GM2

((x− a)2 + y2 + z2)
1
2

− 1

2
ω2((x− µa)2 + y2) . (2.37)

Figure 2.2 shows some equipotential lines in the xy-plane of this potential for a fixed M1,
M2, and a. It should be noted that, as can be seen from Equation 2.35, the equipotentials
are really only functions of M1 and M2 that scale with a, i.e., Φ = GM1

a
f(x

a
, y
a
, z
a
,M1,M2).

Figure 2.2: Equipotential surfaces in the z = 0 plane. Note that L1, L2, L3, L4 and L5 are
known as the Lagrange points (stable and unstable gravitational equilibrium).
Source: http://www.wissenschaft-online.de/astrowissen/images/intermed/RocheLobes+LagrangePoints.jpg

Of particular significance in Figure 2.2 is the equipotential that encloses the binary in a
figure-eight with each mass located in one of the loops. In three dimensions, this equipotential
defines two teardrop-shaped volumes called “Roche lobes”, each enclosing one of the masses.
The two volumes touch at the point labeled L1. This is the “inner Lagrangian point”, and
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it is a saddle point in potential space considered here. At the inner Lagrangian point, a
particle is equally bound to both stars.

It is also important to note that these equipotential surfaces describe the shape of the star.
Assuming the response of a star to be hydrostatic, one can use the equation of hydrostatic
equilibrium to describe the behavior of a particular fluid element at some point P (x, y, z)
with density ρ and pressure p by

1

ρ
5 p+5Φ = 0 . (2.38)

From the above equation, it can be seen that pressure and density on an equipotential surface
are constant (e.g., Shu [152]). If one approximates the density and pressure of a star to be
zero (or some other constant value) along its surface, then the surface also runs along an
equipotential. This implies that a line of constant potential also describes the shape of a
star. Consequently, if the volume of a star in a binary system exceeds its Roche lobe, then
mass will flow through the inner Lagrangian point and is captured by its companion. Figure
2.3 gives a slightly more intuitive representation of the potential, and it clearly shows what
the consequence of an overfilled Roche lobe would be.

Figure 2.3: Equipotential surface in 2 spatial dimensions and the projections of many surfaces
using contour mapping. Source: https://www.e-education.psu.edu/astro801/files/astro801/image/
Lesson%206/800px-RochePotential.jpg
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Inside the Roche lobe, mass is bound to its star. If both stars of a binary system are
within their Roche lobe limits, then the system is “detached”, and no mass transfer occurs.
However, should one star exceed its Roche lobe, then mass will flow off that star and into
the potential well of its companion. A system in this state is called semi-detached. Such
a picture describes the case of LMXBs and IMXBs, and its consequences with respect to
mass transfer will be discussed in subsequent sections. In the case of both stars over-filling
their lobes a common envelope would form around the stars, engulfing them. This situation
would allow for the possibility for mass to leave the system through the points L2 and L3
(the “second Lagrangian point” and “third Lagrangian point”, respectively). This case will
not be discussed in this work.

No exact analytical expression in terms of binary parameters (separation, masses, etc.)
exists for the size and shape of the Roche lobe. Thus, to minimize computing time, an
approximate analytical formula giving the radius of a sphere with the same volume as the
corresponding actual Roche lobe is frequently used. The radius of this sphere is often termed
“effective Roche lobe radius”. Expressing the Roche lobe in terms of its effective Roche lobe
radius is especially useful when spherical symmetry is assumed in stellar models. Early work
on X-ray binary evolution (e.g., [177, 134, 133]) has used the following formula (see Kopal
[82] or Paczyński [114, 115]) that gives the effective Roche lobe radius of the secondary
(RL, 2) as a function of M1, M2 and a (the orbital separation of the binary) as long as
0 < M2/M1 . 0.8:

RL, 2

a
≈ 2

3
4
3

(
M2

M1 +M2

) 1
3

. (2.39)

The particular formula used in more recent work (e.g., [122, 106, 50]) and that is used in
this project was introduced by Eggleton [39] and is accurate to within 1% for all mass ratios
q ≡ M2

M1
. It is written as

RL, 2 ≈
0.49q

2
3

0.6q
2
3 + ln

(
1 + q

1
3

) a , (2.40)

for 0 < q <∞.

2.2.2 Mass-Transfer Rate

The MESA code computes the mass-transfer rate of the donor star according to the prescription
of Ritter [135],

Ṁ2 = Ṁ0e
R2−RL
HP . (2.41)
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Note that HP is the pressure scale height at the surface of the donor star, and it can be
computed as follows,

HP =
Ps
gsρs

, (2.42)

where Ps, gs = GM2

R2
2
, and ρs are the pressure, local gravitational acceleration, and density at

the surface of the donor star, respectively. Also, the MESA code uses Ṁ0 ≡ −5×10−10M� yr−1.

2.2.3 Angular Momentum Loss

There are two ways in which an initially detached binary system can come into contact.
The simplest way is for one of the stars in the system to expand in radius until it reaches
its Roche lobe limit. In simple terms, the star “grows” into its Roche lobe due to nuclear
evolution. The other possibility for a system to come into contact is for the Roche lobe of
a star to decrease in size until it reaches the surface of the star. Here, one could say that
the Roche lobe “shrinks” onto the star. Such a reduction in the size of the Roche lobe must
be the result of a decrease in the binary’s orbital separation (recall from Section 2.2.1 that
the potential scales with a, the orbital separation). Both situations can bring a binary into
a semi-detached state and allow for the onset of mass transfer from one star to the other.

The fact that the loss of angular momentum in a binary leads to a decreased orbital
separation is most easily understood when considering the following equation:

J2 = G
(M1M2)

2

(M1 +M2)
a . (2.43)

This equation gives the instantaneous orbital angular momentum of a synchronized binary
system with circular orbits about the center of mass. Here, G is the gravitational constant,
M1 and M2 are the masses of the neutron star and donor star, respectively, and a is the
orbital separation. Looking at Equation 2.43, one can see that a direct loss of angular
momentum from a binary system must result in a decrease in orbital separation (assuming
no mass transfer). The subsequent two sections of this thesis will discuss the two sinks of
angular momentum that are deemed most significant and considered in this thesis: magnetic
braking and gravitational radiation. Also, a detailed analysis with regard to the changes in
orbital separation due to mass loss from the system and the redistribution of mass within
the system will be presented.

2.2.3.1 Specific Angular Momentum of Mass Leaving the System

The most obvious way a binary system can lose angular momentum is through matter escap-
ing the system. In the case of X-ray binaries, it will be seen in Section 2.3.1 that neutron stars
have a critical accretion rate, so it is easy to imagine that not all mass flowing off the donor
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star is accreted onto the neutron star (or is contained in the accretion disk). Thus, what
follows is a simple analysis with regard to the specific angular momentum carried away by
some small amount of mass δm escaping the system. The setup considers two point masses,
M1 and M2, orbiting their common center of mass (CM) in circular orbits. The distances
from this center of mass to the first and second mass are given by r1 and r2, respectively.
The separation of the two masses is thus r1 + r2 = a. The angular momentum of a particle
of mass δm a distance r1 away from the axis of rotation (center of mass) is then given by

⇀

δJ =
⇀
r1 × δm

⇀
v⊥ , (2.44)

where ⇀
v⊥ is the tangential velocity of the particle and

⇀

|v⊥| = ωr1 (with ω representing the
angular velocity of the particle). Since ⇀

r1 is perpendicular to ⇀
v⊥, one can write∣∣∣⇀δJ∣∣∣ = r1 δm r1ω = r21 δmω . (2.45)

The definition of the center of mass givesM2r2 = M1r1 and therefore r1 = M2

(M1+M2)
a. Hence,

Equation 2.45 yields

δJ =
M2

2

M
3
2
T

a
1
2G

1
2 δm , (2.46)

where the angular velocity, ω, has been replaced by
√

G(M1+M2)
a3

. Equation 2.46 gives the
orbital angular momentum of a particle with mass δm located at the position of M1.

By applying the above result to X-ray binary systems and assuming that all escaping
matter leaves the system from the position of the neutron star, one arrives at the equation
for a system’s change in angular momentum due to mass lost from the system:(

dJ

dt

)
Ṁ

=
M2

2

M
3
2
T

a
1
2G

1
2
dm

dt
. (2.47)

Thus, noting that dm
dt

is really the change of mass of the whole system, one obtains

1

J

(
dJ

dt

)
Ṁ

=
M2

M1MT

ṀT . (2.48)

More generally, the angular momentum loss due to mass loss can be written as (e.g.,
[170, 157])

J̇Ṁ
Jorb

=
α̃ + β̃q2 + δ̃γ(1 + q)2

1 + q

Ṁ2

M2

, (2.49)

where α̃, β̃, and δ̃ are the fractions of mass lost from the donor star in the form of direct
fast wind, the mass ejected from the vicinity of the neutron star, and from a circumbinary
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coplanar toroid (with radius ar = γ2a), respectively (see Soberman et al. [153] for more
details on circumbinary coplanar toroid). Recall that q ≡ M2/M1. For this work, one can
ignore the first and third effects since they are negligible. Thus,

J̇Ṁ
Jorb

=
β̃q2

1 + q

Ṁ2

M2

, (2.50)

which can be rewritten as
J̇Ṁ
Jorb

= β̃
M2

M1MT

Ṁ2 . (2.51)

This equation is precisely Equation 2.48 under the definition β̃ ≡ ṀT/Ṁ2. In general, it
is more useful to define a transfer fraction β rather than a fraction of the mass lost, i.e.
β ≡ 1− β̃, or equivalently,

β ≡ −Ṁ1

Ṁ2

. (2.52)

Thus, using Kepler’s Third Law and Equation 2.43, one can write

J̇Ṁ = (1− β)Ṁ2

(
M2

MT

)2

a2ω , (2.53)

where ω = 2π
Porb

. This equation is precisely what is used in the MESA code.
So far, it has been assumed that matter leaves the system close to the neutron star.

However, it is possible to be more general and explore the possibility that matter leaves the
system closer to the donor star or exactly at the neutron star. In this case, one can write
(e.g., [133, 122])

J̇Ṁ = α(1− β)Ṁ2a
2ω . (2.54)

Note that if one takes

α =

(
M2

MT

)2

, (2.55)

one obtains Equation 2.53. However, some authors (e.g., [122, 36]) prefer to use a value of
1 for α, which means that they assume that all the mass leaves the system exactly at the
neutron star. For this thesis, the opposite case has been tested, i.e. α = 0, which would
mean that all the mass leaves the system exactly at the center of mass of the binary system.
In this case, no orbital angular momentum is lost due to mass loss, and computing a few
evolutionary tracks shows that this leads to X-ray binaries with much larger orbital periods
and very massive neutron stars (> 2.5M�). For reasons that will become clear later (see
Section 2.3.2), this is not favored. For this reason, α is chosen according to Equation 2.55
in this thesis, but again, the prescription for α is still a matter of discuss.

It will be seen in Section 2.3 how mass can leave X-ray binary systems. However, the exact
value of β in Equation 2.53, the mass-transfer fraction, cannot be estimated observationally
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nor theoretically. There are reasons to believe that the physical processes explored in Section
2.3 are not the only one that can lead to mass loss. Thus, the maximummass-transfer fraction
(βmax) is a free parameter. The value of β and βmax will be further discussed in Sections 2.3
and 2.4.4, respectively.

2.2.3.2 Gravitational Radiation

Based on Einstein’s Theory of General Relativity, gravitational quadrupole radiation must
be produced by any accelerating asymetrically rotating massive body (e.g., [102]). This
radiation is thus a form of energy lost from the system (e.g., [86]). In the case of a binary
with circular orbits, the energy lost from the system due to gravitational radiation (when
averaged over one period) can be expressed as

dE

dt
= −32

5

G

c5

(
M1M2

M1 +M2

)2

a4ω6 , (2.56)

where c is the speed of light (see Andronov et al. [3]). A corresponding expression for the
loss of angular momentum due to gravitational radiation can be obtained by realizing that
for circular orbits dJ

dt
= 1

ω
dE
dt
. A proof for this relationship can be found in Appendix C.2

of Goliasch [50]. Then, the corresponding equation for loss of angular momentum due to
gravitational radiation of a binary system with circular orbit is(

∂J

∂t

)
GR

= −32

5

G

c5

(
M1M2

M1 +M2

)2

a4ω5 , (2.57)

which can be rewritten as(
∂J

∂t

)
GR

= −32

5

G
7
2 (M1 +M2)

1
2

c5
M2

1M
2
2 a
− 7

2 . (2.58)

2.2.3.3 Magnetic Braking

Gravitational radiation is a constant sink of angular momentum for systems considered in this
thesis. However, there is a third mechanism believed to dissipate orbital angular momentum.
This mechanism is most often called “magnetic braking” and is due to a “magnetic stellar
wind”. It generally dominates over gravitational radiation in terms of angular momentum
loss. However, magnetic braking is governed by the characteristics and evolutionary state of
the donor star and is thus not always present in X-ray binaries.

Magnetic braking is a phenomenon observed to be occurring in individual stars. It causes
a loss of spin angular momentum in stars and forces them to decrease their rates of rotation
(i.e., to “spin down”). The mechanism through which this angular momentum is lost is best
understood by recalling the basic expression for the angular momentum (J) of a mass m
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rotating at a distance r about an axis of rotation with tangential velocity v and rotational
velocity ωrot:

|
⇀

J |= r ·mv = r2ωrot . (2.59)

From Equation 2.59, it is clear that even the smallest fraction of total mass (δm) can
extract significant amounts of angular momentum from a system when escaping at a large
enough radius (the classic example of a figure skater that spins fast with his arms close to
his body -the axis of rotation- and then slows his rotation as he extends them out). This is
the process believed to be at work that causes a magnetic braking torque in stars. As a star
constantly loses small amounts of mass particles (stellar wind) from its outer atmosphere,
they remain magnetically bound to the star out to very large radii before escaping.

A typical one solar-mass main-sequence star loses about of 10−13M�
yr

due to stellar winds
(the exact strength and orientation of this wind is still in debate; see Warner [176] page
444, and references therein). Still, it is not the loss of this mass directly that results in a
significant sink of angular momentum. In fact, without open magnetic field lines, a star’s loss
of angular momentum due to its wind is minute. However, it is believed that the “dynamo”
effect can allow certain rapidly rotating stars to consistently generate a magnetic field in
which open field lines extend out radially for several hundred solar radii. It is understood
that such an arrangement of the magnetic field mostly occurs in stars with radiative cores
and deep convective envelopes. Although the exact emergence of these radial magnetic field
lines still remains to be explained, it is believed that they are rooted at the interface of
the convective envelope and the radiative core (e.g., [62]). Fully convective stars, even with
comparable magnetic activity, do not seem to produce such an arrangement of their field
lines.

With magnetic field lines of significant strength extending radially, a star’s stellar wind
remains magnetically entrained on those lines after escaping the stellar atmosphere. The
wind thus stays bound to the star and is forced to continue co-rotating with it up to some
critical radius. The distance up to which stellar wind is still bound to the rotation of a
star is given by the Alfvén radius. For solar-mass stars, the Alfvén radius (RA) is estimated
to be ∼ 100R� from the star’s axis of rotation (Warner [176]). At such large distances,
the continuous loss of even insignificant amounts of mass can become a considerable sink
of angular momentum for stars, as is evident from Equation 2.59. As mentioned above, for
single stars this loss of angular momentum acts as a braking torque, slowing a star’s rotation.

When developing an equation for the angular momentum lost through magnetic braking,
it is common to use the correlation between equatorial rotation velocity and age based on
main sequence stars with approximately one solar mass. Using the results of Kraft [83],
Rappaport et al. [134] express this relationship as

ve ≈ f × 1014t
− 1

2
◦

[cm]

[s]
, (2.60)
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where t◦ is the time elapsed since the star settled onto the main sequence and f is a constant
that lies in the range from ∼ 0.75 to 1.75. From the above equation, a braking torque can
be deduced (e.g., [173]) that Rappaport et al. [134] state as

τmb ≈ −0.5× 10−28
(
k

f

)2

MR4ω3
star [dyn] [cm] , (2.61)

with k being the structure constant of the star that yields the stellar moment of inertia
I = k2MR2, and ωstar represents the rotational angular velocity of the star. Also, a typical
value for f is 1.14707 (e.g., [50]).

In the case of close interacting binary systems, the mutual gravity of the stars causes
tidal forces that constrain their rotation about their own axis. This enforces a co-rotation
of the components with the orbit (i.e., ωstar = ωorbital, where ωorbital is the Keplerian angular
velocity of the system). The stars are “phase-locked” and thus forced to keep rotating at
the orbital angular velocity. A phase-locked star that loses angular momentum through
magnetic braking cannot simply decrease its rate of rotation. In consequence, it will “tap
into” the angular momentum contained in the orbital motion of the binary in order to be able
to maintain its rotational velocity. In other words, the loss of a star’s angular momentum
due to the magnetic stellar wind is coupled to a decrease of the system’s orbital angular
momentum. The actual mechanism how the angular momentum is redistributed is very
poorly understood. The consensus is that it occurs through the donor star’s interaction with
the accretion disk.

Assuming circular orbits, one can express Equation 2.61 in terms of the Keplerian angular
velocity of the binary. Using f = 1.14707, the orbital angular momentum lost by a X-ray
binary due to the effects of magnetic braking is(

∂J

∂t

)
MB

= −3.8× 10−29
G

3
2

a
9
2

M
3
2
T k

2M2R
4
2 . (2.62)

Rappaport et al. [134] have a more general equation1,(
∂J

∂t

)
MB

= −3.8× 10−30M2R
4
�

(
R2

R�

)γ
ω3 [dyn] [cm] , (2.63)

where different values for the index γ are explored by them. As adopted by Nelson et al.
[106] and others, the MESA code uses γ = 3, and this is the value used throughout this thesis.

In order to use Equation 2.62, one has to compute the coefficient k2. For a sphere of
constant density, the moment of inertia is known to be

I =
2

5
MR2 =

8

15
πρR5 , (2.64)

1Although this equation is more general, it assumes that k2 = 0.1. The more general equation would be(
∂J
∂t

)
MB

= −3.8× 10−29k2M2R
4
�

(
R2

R�

)γ
ω3.
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so the moment of inertia of a thin spherical shell is given by

dI =
8

3
πρR4dR =

2

3

(
4πρR2dR

)
R2 =

2

3
(dM)R2 . (2.65)

The moment of inertia of the whole star can then be written as

I =
2

3

∫ M

0

r2 dm, (2.66)

so comparing with I = k2MR2, one finds

k2 =
2

3MR2

∫ M

0

r2 dm. (2.67)

It is then possible to use the shell approximation of the star to evaluate Equation 2.67 (see
Section 2.1.2 and Figure 2.1 for more details about shells). Thus, since one can assume the
core to be a perfect sphere, one gets

k2 ≈ 1

MR2

(
2

3

nz−1∑
i=1

riri+1∆mi +
2

5
∆mnzr

2
nz

)
, (2.68)

where nz is the total number of shells, ri is the radius from the center of the star to the
surface of shell i (thus, riri+1 is an approximation for r2 at the center of shell i), and ∆mi

is the mass of shell i. Therefore, Equation 2.63 becomes(
∂J

∂t

)
MB

= −3.8× 10−29
R4
�

R2
2

(
R2

R�

)γ
ω3

(
2

3

)∫ M

0

r2 dm (2.69)

∴

(
∂J

∂t

)
MB

≈ −3.8× 10−29
Rγ−2

2

Rγ−4
�

ω3

(
2

3

nz−1∑
i=1

riri+1∆mi +
2

5
∆mnzr

2
nz

)
. (2.70)

Magnetic Braking for Convective Stars
The widely accepted view is that the mechanism of magnetic braking does not take place

when a star is fully convective. As discussed above, the arrangement of magnetic field
lines differs considerably for such stars, and no free radial lines exist. This, combined with
considerably diminished stellar winds, supports the position that magnetic braking does not
apply to fully convective stars (see [176, 64] for a discussion and references). The mass below
which single stars are fully convective occurs at ' 0.25M� according to the models produced
for this work. For X-ray binary systems, donor stars that are continuously losing mass can
eventually undergo a structure change and become fully convective. Accordingly, this point
should mark the end of magnetic braking for the corresponding system. The dividing line
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when mass-losing stars become fully convective is a function of their nuclear evolution and
mass loss history. Thus, if during the evolution of a specific X-ray binary track for this work
the donor star becomes convective, then the angular momentum loss due to magnetic braking
is discounted for the remainder of the track. The sudden cessation in magnetic braking is
believed to be the cause for the so-called “period gap” of CV-like systems (see Section 2.4.1).
An alternative view and discussion regarding this abrupt cease of magnetic braking on the
boundary to fully convective stars is given by Andronov et al. [3].

Furthermore, something similar occurs for more massive donor stars. If the donor star
mass lies in the range 0.25M� . M2 . 1.4M�, then the donor has a convective zone in its
outer layers that allows for magnetic braking. However, around 1.4M�, the outer layers of
the star are fully radiative, and for larger masses, a convective zone is present closer to the
core of the star, whereas the rest of the star is radiative. In this case, i.e. for M2 & 1.4M�,
magnetic braking cannot occur, and again, this implies that for X-ray binary systems with
donors heavier than 1.4M�, angular momentum loss due to magnetic braking is not allowed.

2.2.4 Changes in Orbital Separation

Any loss of angular momentum from a binary system (be it matter escaping the system,
magnetic braking, gravitational radiation, or some other mechanism) forces the system to
respond to this loss. The system needs to reflect its new (lower) total angular momentum
through a decreased orbital separation and/or angular velocity (see Section 2.2.3). However,
for semi-detached binary systems, it is not only a loss of angular momentum from the system
that can cause changes in the orbital separation. By conservation of angular momentum
(when no angular momentum loss is present), a redistribution of mass also yields a change
in a binary’s orbital separation. To show this, one can start by re-stating Equation 2.43, the
total orbital angular momentum J of a system consisting of two orbiting point masses M1

and M2 with total mass MT = M1 +M2, and an orbital separation a:

J2 = G
M2

1M
2
2

MT

a . (2.71)

In accordance with the above equation, conservation of angular momentum for such a system
with regard to a redistribution of mass can be written as

J2 = G
M2

1M
2
2

MT

a = J̄2 = G
M̄2

1 M̄
2
2

MT

ā , (2.72)

where the bars denote the corresponding values after some amount of mass (δM) has been
transferred from mass 2 to mass 1 (the sum of the massesMT = M1 +M2 remains constant).
Rewriting the above equation yields
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a

ā
=
M2

1M
2
2

M̄2
1 M̄

2
2

, (2.73)

and substituting for M̄1 and M̄2 and then solving for ā gives

ā =
(M1 + δM)2(M2 − δM)2

M2
1M

2
2

a =

(
1 +

δM

M1

)2(
1− δM

M2

)2

a . (2.74)

From the above equation, it can be seen that a redistribution of mass in a binary leads
to changes in the orbital separation. In fact, the transfer of mass from the lower to the
higher mass (M̄1 = M1 + δM and M̄2 = M2 − δM , with M1 > M2) results in a widening
of the orbit (ā > a), and vice-versa. A detailed proof of this result is given in Appendix
C.3 of Goliasch [50]. It can be understood qualitatively by realizing that for M1 > M2,
the center of mass is closer to M1. A transfer of some mass δM from M2 to M1, therefore,
reduces the angular momentum of the shifted mass. In accordance with conservation of total
angular momentum, an increase in orbital separation is then inevitable to compensate for
the reduction in angular momentum of δM .

In the case of X-ray binary systems, the combined effects of actual momentum losses
and mass re-distributions have to be considered when modeling a system’s orbital mechanics
over time. Thus, the remainder of this section will derive an expression for changes in the
orbital separation, taking all of the above into account. Starting from Equation 2.71, one
can express the change of total angular momentum over time by

2

·
J

J
= 2

·
M1

M1

+ 2

·
M2

M2

+

·
a

a
−

·
MT

MT

. (2.75)

For X-ray binary systems, the change of total angular momentum is the sum of angular
momentum loss by the mechanisms discussed in the previous section:

·
J =

(
∂J

∂t

)
GR

+

(
∂J

∂t

)
MB

+

(
∂J

∂t

)
·
M

. (2.76)

The first term on the right-hand side in the above equation represents the angular momen-
tum carried away by gravitational radiation (as given by Equation 2.58), the second term
represents the angular momentum lost through magnetic braking (as given by Equation
2.63), and the third term stands for the angular momentum carried away by mass leaving
the system (as given by Equation 2.47). Combining Equations 2.75 and 2.76 and solving for
·
a yields the desired expression for changes in the orbital separation:

·
a

a
= −2

 ·
M1

M1

+

·
M2

M2

− ·
MT

MT

+
2

J

(
∂J

∂t

)
GR

+
2

J

(
∂J

∂t

)
MB

+

(
∂J

∂t

)
·
M

. (2.77)
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The MESA code handles this computation by first computing J̇ according to Equation
2.76, and then, it evaluates

J = Jprev + J̇ dt , (2.78)

where Jprev is the orbital angular momentum in the previous step in the evolution and dt is
the time step from the previous step to the actual step. Equivalently,

M2 = M2,prev + Ṁ2 dt , (2.79)

and
M1 = M1,prev + Ṁ1 dt , (2.80)

where Ṁ2 is computed according to Equation 2.41 and Ṁ1 = −βṀ2 (recall Equation 2.52).
Finally, the orbital separation is computed using Equation 2.71:

a =

(
J

M1M2

)2
(M1 +M2)

G
. (2.81)

2.3 Neutron Stars Properties
So far, this thesis has explored full evolutionary models. Indeed, computing the evolution
of standard main-sequence stars has become fairly straightforward with the advancement of
computer codes such as the MESA code. Also, the dynamics of binary systems as described in
the previous section are relatively well understood. When it comes to neutron stars, building
a computer code that would calculate their evolution has still not been done. In fact, our
knowledge of neutron stars is quite limited. Neutron stars were predicted theoretically by
L. D. Landau in the 1930s, but there is still a lot of unknown physics related to them
(see Lipunov [91] or Shapiro & Teukolsky [150] for a general introduction). In particular,
determining the composition of neutron stars and their equation of state is a very active field
of research. This issue is discussed in Section 2.3.2.

Given the small size and the high gravitational potential of neutron stars, a neutron star
evolution code would require a careful analysis of general relativity. Fortunately, knowing
the exact structure of a neutron star would not give us additional information and change
our final results significantly concerning X-ray binary evolution. However, there are some
properties of neutron stars that must still be taken into account because of their impact on
X-ray binary evolution. In the following sections, the theory regarding these properties is
developed.

2.3.1 Eddington Limit

In his 1926 book, The Internal Constitution of the Stars, Arthur S. Eddington postulated
that stars have a critical luminosity due to radiation pressure (see Eddington [38]). We
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will examine this critical luminosity from first principles (see [93, 126, 143, 150, 101, 91] for
standard textbook discussion). Radiation pressure can be written as

Prad =
1

3
aT 4 , (2.82)

which implies that

dPrad =
4

3
aT 3dT . (2.83)

In Section 2.1.1, it has been found that the energy transport equation (Equation 2.11) for
radiation (see Equation 2.16) can be written as

dT

dm
= − 3κ

64π2acr4

(
Lm
T 3

)
, (2.84)

which can be translated into the Eulerian scheme as

dT

dr
= − 3

4ac

κρ

T 3

Lm
4πr2

. (2.85)

Substituting dT from Equation 2.83 into Equation 2.85 yields

3

4

1

aT 3

dPrad
dr

= − 3

4ac

κρ

T 3

Lm
4πr2

. (2.86)

This equation can be divided by the equation of hydrostatic equilibrium (Equation 2.6) to
find

dPrad
dP

=
κLm

4πcGm
. (2.87)

Since dP = dPrad + dPgas, and since both Prad and Pgas decrease outward, it is always true
that dPrad < dP , and consequently, dPrad

dP
< 1. Therefore, Equation 2.87 becomes

Lm <
4πcGm

κ
, (2.88)

and for the surface of the star, one gets

L <
4πcGM

κ
. (2.89)

The right-hand side of Equation 2.89 is the critical luminosity that Eddington came up with,
hence the definition of Ledd:

Ledd ≡
4πcGM

κ
. (2.90)
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Note that for relativistic objects such as neutron stars or black holes, it is possible to account
for general relativistic effects (e.g., [116, 150]), and one obtains

Ledd =
4πcGM

κ

(
1− 2GM

Rc2

)− 1
2

. (2.91)

Now, the goal is to see why this critical luminosity is important in X-ray binary evolution.
In general, for steady spherical accretion onto a neutron star (neglecting any magnetic field),
one has

L1 =
GM1Ṁ1

R1

, (2.92)

This assumes that all the energy coming from the accreting gas is radiated at the same rate
as it is liberated. One can then define the efficiency of radiative emission (as Shapiro &
Teukolsky [150] call it), or in other words, the accretion efficiency (as Kolb [81] calls it). It
can be seen as the efficiency of converting gravitational energy (the rest mass energy of the
accreted matter) into heat. The accretion efficiency is defined as

ξ ≡ L

Ṁc2
, (2.93)

so for a neutron star, one can use Equation 2.92 to estimate the efficiency as being

ξ =
GM1

R1c2
. (2.94)

For a typical neutron star, one has ξ ∼ 0.1 (e.g., [150, 143]). For a white dwarf, the efficiency
is ξ ∼ 3 × 10−4 (e.g., [143, 93]), and for a black hole, it can be from ξ ∼ 0.06 to ξ ∼ 0.3
(e.g., [143, 81, 149, 123]), where it is smaller for Schwarzschild black holes and larger for
Kerr black holes. Now, the definition of the accretion efficiency (Equation 2.93) and the
Eddington luminosity (Equation 2.91) can be combined to find a critical accretion rate for
neutron stars:

Ṁedd =
Ledd
ξc2

=
4πGM1

cκξ

(
1− 2GM1

R1c2

)− 1
2

. (2.95)

It can finally be simplified using Equation 2.94:

Ṁedd =
4πGM1

cκξ
(1− 2ξ)−

1
2 . (2.96)

Let us recall that the mass that is transferred onto the neutron star comes from the
outer layers of the donor star. Thus, the opacity of this material comes from the Thomson
scattering of the material on the surface of the donor star, so one can write (e.g., [79])

κ =
8π

3

r2e
µemu

, (2.97)
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where re is the classical electron radius, µe is the mean molecular weight per free electron,
and mu is the atomic mass constant. Typically, for a fully ionized gas, one can approximate
µe to be (e.g., [79])

µe =
2

1 +X
, (2.98)

where X is the mass fraction of hydrogen (taken at the surface of the donor star in our case).
Thus, one can rewrite

κ ∼= 0.20(1 +X) cm2 g−1 . (2.99)

One thus gets the final expression for the critical mass-transfer rate:

Ṁedd =
4πGM1

cκconst(1 +X)ξ
(1− 2ξ)−

1
2 , (2.100)

where one defines κconst ≡ 4πr2e
3mu
∼= 0.20 cm2 g−1. Although the value of Ṁedd changes through-

out the evolution of X-ray binaries, it is important to remember for the rest of this thesis
that it is of the order of 10−8M�/yr.

So, the critical Eddington luminosity limits the amount of mass that the donor star can
successfully transfer to the neutron star. In other words, the Eddington limit reduces the
mass-transfer fraction β introduced in Section 2.2.3.1. Since β ≡ −Ṁ1/Ṁ2 and since one
wants Ṁ1,max = Ṁedd, one can write

β = βedd = min

{
βmax,

Ṁedd

|Ṁ2|

}
, (2.101)

where the value of the maximum mass-transfer fraction, βmax, is discussed in Section 2.4.4.

2.3.2 Binding Energy

Another important aspect that comes into play when studying X-ray binaries is the binding
energy of neutron stars. It has been pointed out by Alécian & Morsink [2] and by Bagchi
[7] that the binding energy of neutron stars and general relativity (see Lavagetto et al. [89])
might have an effect on the evolution of LMXBs and IMXBs.

The binding energy of a neutron star is defined as the difference between its baryonic mass
(the rest mass of the individual baryons that make up the neutron star) and its gravitational
mass (at infinity):

BE = (MB −MG) c2 . (2.102)

In more detail, the gravitational mass of a neutron star is given by

MG =

∫
ρ(r)r2drdΩ =

∫ R

0

4πr2ρ(r)dr , (2.103)
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where dΩ = sin θ dθdφ. The right-most equality assumes a spherically symmetric neutron
star, which is a very good approximation for such compact objects. It is important to note
that the gravitational mass is the one measured observationally and the one used in studies
of neutron star mass distribution (e.g., [80, 113, 165, 169, 148]). However, since a neutron
star is a relativistic object, one should consider Schwarzschild geometry. That way, one can
define the proper mass of a neutron star to be

MP =

∫
e
λ
2 ρr2drdΩ , (2.104)

where e
λ
2 =

(
1− 2GmG(r)

rc2

)− 1
2 is the square root of the radial component of the Schwarzchild

metric tensor (Landau-Lifshitz notation, [86]). Thus, the proper mass becomes

MP = 4π

∫ R

0

(
1− 2GmG(r)

rc2

)− 1
2

ρ(r)r2dr , (2.105)

and the total number of baryons becomes

NB = 4π

∫ R

0

(
1− 2GmG(r)

rc2

)− 1
2

n(r)r2dr , (2.106)

where n(r) is the particle number density. The definition of the baryonic mass of a neutron
star immediately follows:

MB = 4πmB

∫ R

0

(
1− 2GmG(r)

rc2

)− 1
2

n(r)r2dr , (2.107)

where mB is the mass of a baryon. For a general discussion on the baryon number of a star
and of binding energy, see Glendenning [49], and for a general discussion of Schwarzchild
geometry, refer to any standard general relativity textbook (e.g., [28, 175, 102]).

Now, let us emphasize why the binding energy is important in X-ray binary evolution.
Physically, when mass is transferred from the donor star to the neutron star, the neutron
star accretes baryonic mass, so

Macc = −βeddṀ2dt = dMB , (2.108)

i.e., the accreted mass by the neutron star is equal to the change in its baryonic mass. Using
the definition of binding energy (Equation 2.102), one gets

Macc = dMB = dMG + d

(
BE

c2

)
. (2.109)
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Since astronomers measure M1 = MG, every time the neutron star accretes some mass dMB

through X-ray binary evolution, one has to subtract the change in binding energy d
(
BE
c2

)
to

determine the change in gravitational mass of the neutron star (dMG).
If one knows the equation of state of a neutron star (i.e., ρ(r) and n(r)), it is then

possible to evaluate Equations 2.103 and 2.107 to find the baryonic and gravitational mass,
and consequently, the binding energy. However, finding equations of state for neutron stars
is still a very active field of research because of our poor understanding of matter at high
density. However, there are many prospective equations of state for neutron stars (see
Lattimer & Prakash [87], and references therein) that allow us to estimate the binding
energy. In particular, Lattimer & Prakash [87] came up with an approximate expression for
the binding energy that fits the most common neutron-star equations of state:

BE

MGc2
=

6ε

5 (2− ε)
, (2.110)

where ε ≡ GMG

Rc2
. Note that this ε is the same factor as in Equation 2.94. Figure 2.4 shows this

fit (black curve) and many prospective equations of state, from standard ones (e.g., AP4) to
more exotic equations of state (e.g., GS1). The fit is better for the more standard equations
of state, and this is fine since most of the exotic equations of state have been ruled out by
the discovery of a ∼ 2M� neutron star (see Figure 2.5).

Now, in order to use Equation 2.109 with Equation 2.110, it would be useful to find the
ratio dMG

dMB
as a function of the factor ε. In general, let us assume there exists a function

f(ε) ≡ BE

MGc2
(2.111)

for the binding energy as a function of ε. Then, rearranging Equation 2.111 and taking the
differential, one obtains

d

(
BE

c2

)
= dMG f(ε) +MG df(ε) , (2.112)

so Equation 2.109 becomes

dMB = dMG

(
1 + f(ε) +

(
dMG

MG

)−1
df(ε)

)
, (2.113)

where by the definition of ε, one has

dMG

MG

=
dε

ε
, (2.114)

hence
dMB = dMG

(
1 + f(ε) + ε

df

dε

)
(2.115)
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Figure 2.4: Binding energy of a neutron star as a function of ε ≡ GMG

Rc2
for different prospective

equations of state (taken from Lattimer [88], but originally in Lattimer & Prakash [87]; see
these articles for more details).
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Figure 2.5: Mass of a neutron star versus its radius for different prospective equations of
state (taken from Demorest et al. [35]). The mass of J1909-3744 (yellow band), J1903+0327
(orange band), and J1614-2230 (red band) have been added to the graph. The discovery
of J1614-2230 rules out many equations of state such as MS1, FSU, GM3, PAL6, GS1, and
SQM1. See Demorest et al. [35] for more details.
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∴
dMG

dMB

=

(
1 + f(ε) + ε

df

dε

)−1
. (2.116)

If one takes f(ε) to be Equation 2.110, one can compute the right hand side of Equation
2.116 and find

dMG

dMB

=
5 (ε− 2)2

20 + 4ε− ε2
. (2.117)

This equation can now be used to correct the accreted mass by the neutron star throughout
its evolution.

Lavagetto et al. [89] consider an extra relativistic effect that would change the accreted
gravitational mass, that is the intrinsic angular momentum J :

dMG =

(
∂MG

∂MB

)
J

dMB +

(
∂MG

∂J

)
MB

dJ . (2.118)

The first partial derivative of Equation 2.118 is precisely what has been found earlier (Equa-
tion 2.117). The second partial derivative is due to the rotation of the neutron star, i.e.,(

∂MG

∂J

)
MB

=
ωNS
c2

, (2.119)

where ωNS is the neutron star spin frequency.
Bagchi [7] computed models in which rotating neutron stars are considered. She found

out that for ωNS = 3000 s−1 and for a fixed value of MG, the proper mass of the neutron
star (and consequently, the baryonic mass) would decrease by an amount of less than 1%.

Let us do some estimations regarding the angular momentum of a neutron star. Classi-
cally, one can say that for a neutron star, J = IωNS with I ∼= 2M1R

2
1/5 (constant density

approximation). Thus,
J̇

J
∼=
Ṁ1

M1

+
2Ṙ1

R1

+
ω̇NS
ωNS

, (2.120)

but looking at the more standard equations of state for neutron stars (such as AP4) on Figure
2.5, within a mass range of 1.4M� − 2.0M�, one can clearly set Ṙ1 = 0. Since ωNS = 2π/P
and M1 = MG, one can use Equation 2.120 to find

ωNS
c2

J̇

ṀG

∼=
2R2

1ω
2
NS

5c2

(
1− M1

Ṁ1

Ṗ

P

)
. (2.121)

It is known that millisecond pulsars can have very small period derivatives such as Ṗ . 10−18

(e.g., [84]). If one assumes that Ṗ is so small that M1

Ṁ1

Ṗ
P
≈ 0, the maximum value that ωNS

c2
J̇
ṀG

can take is roughly 2R2
1ω

2
NS

5c2
. Taking R1 ≈ 15 km (which is probably too large) and taking
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ωNS ≈ 6000 s−1 (which would be a really fast millisecond pulsar), then ωNS
c2

J̇
ṀG

would be
around 3.6%. If one takes more realistic values (say R1 ≈ 11 km and ωNS ≈ 3000 s−1), then
ωNS
c2

J̇
ṀG

drops to ≈ 0.5%. This indicates that the term
(
∂MG

∂J

)
MB

dJ of Equation 2.118 is
probably negligible for this work.

Angular Momentum Loss due to Neutron Star Properties
Alécian & Morsink [2] and Lavage to et al. [89] mention in their article that the binding

energy of neutron stars has an additional effect on X-ray binaries. Indeed, the mass defect
due to binding energy can be seen as mass leaving the system, and one can thus expect that
this leads to angular momentum loss as seen in Section 2.2.3.1. To see this, let us recall that
dMG = dM1 and dMB = −βedd dM2 (Equation 2.108), and let us rewrite Equation 2.118
(without the term at the far right for the reasons given in the previous paragraph):

dM1 = −dMG

dMB

βedd dM2 . (2.122)

The term dMG

dMB
can then be seen as reducing the mass-transfer fraction, β. Let us then define

βBE ≡
dMG

dMB

, (2.123)

which can be computed according to Equation 2.117. Then, one has

Ṁ1 = −βBEβeddṀ2 , (2.124)

so since β ≡ −Ṁ1/Ṁ2, one finally obtains

β = βBEβedd . (2.125)

Recalling that β modifies the angular momentum loss due to mass loss (see Equation 2.53), it
is obvious that, similarly to the Eddington limit, the binding energy of neutron stars reduces
the angular momentum of X-ray binary systems.

Neutron Star Radius
The radius of the neutron star has already been encountered in some equations (e.g.,

Equation 2.95) and it will come back in the theory of Section 3.1. As just seen, the radius
of neutron stars has yet to be determined. There are many candidates to the equation of
state and they all have different mass-radius relationships. However, looking at some of the
equations of state in Figure 2.5, it is fair to claim that the radius is always close to being
constant for a mass range of 1.4M� − 2.0M�. For this work, it has been decided that R1

is a constant value of R1 = 11.5 km. This value is roughly an average of the two common
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Figure 2.6: Graph of the mass of neutron stars as a function of their radius. Several possible
equations of state are labeled on the graph. The purple regions show the possible radii of
neutron stars at the 90% and 99% confidence levels according to Guillot et al. [53]. See their
article for more details.

equations of state AP3 and AP4 (see Akmal et al. [1]). Recently, Guillot et al. [53] claimed
that, at the 90% confidence level, the radius of a neutron star should be RNS = 9.1+1.3

−1.5 km.
Their 99% confidence level reaches ' 11 km (see Figure 2.6). The value for this work of
11.5 km would thus be slightly out of their range, but changing our value of R1 by a very
small fraction would certainly not alter the final results of this thesis significantly as will be
justified in Section 3.2.6.

2.4 Evolution of Low- and Intermediate-Mass X-ray Bi-
naries

Now that the necessary theory has been discussed, one can perform computer simulations to
study the evolution of LMBXs and IMXBs. The MESA code computes the stellar evolution of
the donor star as described in Sections 2.1.1 and 2.1.2. We can also use a “test suite” called
rlo standing for Roche lobe overflow. This suite computes all the binary system properties
as described in Section 2.2. Furthermore, the suite has been improved so that it properly
computes the Eddington mass transfer limit as seen in Section 2.3.1, and so that it computes
the mass defect of neutron stars due to their binding energy as described in Section 2.3.2.

To carry out X-ray binary evolution using the MESA code, there are a number of parame-
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ters that must be inputed such as the initial orbital period, the initial donor star mass, and
the initial neutron star mass. This work will compute the evolution of a large portion of the
Porb,i −M2,i (initial orbital period and initial donor star mass) parameter space for LMBXs
and IMXBs. In Section 2.4.2, evolutionary grids will be shown where the initial donor star
mass will range from 1.0M� to 4.0M� and the initial orbital period will range from 10 to
250 hours.

The initial (natal) mass that should be assigned to the neutron star is something less
obvious. One could investigate neutron-star natal-masses ranging from 1.0M� to 1.6M�,
but this would seriously boost the number of evolutionary tracks to compute and increase
the computing time. Instead, this work will mainly use the canonical natal mass of 1.4M�
for the neutron star. The values of 1.2M� and 1.6M� will also be explored for reasons that
will become clear shortly (see Section 2.4.3). The birth masses of neutron stars is an active
field of research on its own, and the different channels that lead to neutron stars and to
LMXBs and IMXBs make it difficult to determine a natal mass. For example, Schwab et al.
[148] suggest that there exists a bimodal distribution of neutron star masses: one around
∼ 1.25M� and one around ∼ 1.35M�. Also, Özel et al. [113] studied double neutron stars
binaries, neutron stars accreting from high-mass companions, and slow pulsars to infer the
birth-mass of neutron stars. They obtained a mass of 1.33 ± 0.06M� for double neutron
stars and a mass of 1.28 ± 0.24M� for accreting and slow pulsars. Given that these values
are still relatively uncertainty, they amply justify the choice of 1.2M� and 1.4M� for this
thesis. The reason for investigating a natal mass of 1.6M� will be justified later.

The main observables of X-ray binary systems are the orbital period and the mass of the
donor star. It is for that reason that the evolution of the orbital period as a function of the
mass of the donor star will be analyzed to understand the different evolutionary paths (see
Section 2.4.1). Also, other observables are interesting such as the mass of the neutron star
and the mass-transfer rate, and the fact that they are critical to our understanding of X-ray
binary systems will soon become clear (see Section 2.4.2).

In Section 2.4.3, the end points of the evolutionary tracks will be analyzed since they can
be easily compared to astronomical observations. Finally, the effect of modifying the value
of the maximum mass-transfer fraction, βmax, will be explored in Section 2.4.4.

2.4.1 Evolutionary Tracks

Let us first look at some typical evolutionary tracks that are represented in Figure 2.7. These
tracks were computed by Lin et al. [90] using an earlier version of the MESA code. Although
a different formula for Ṁedd was used and although the binding energy of the neutron star
was not considered, the qualitative behavior of these tracks remains the same.

Let us start with the curve labeled CV in Figure 2.7. This type of evolutionary path is
obtained when the initial orbital period is relatively small (roughly below 20 hours). It is
called a CV-like evolution because it resembles the evolution a Cataclysmic Variable (CV),
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Figure 2.7: Examples of LMXB and IMXB evolutionary tracks (taken from Lin et al. [90]).

where the accretor is a white dwarf rather than a neutron star. For a thorough discussion
on CV evolution, refer to Goliasch [50], and references therein. Note the presence of (a) a
period gap (due to magnetic braking mentioned in Section 2.2.3.3); and, (b) the minimum
period characteristic to CV evolution. After a Hubble time, the donor star has a mass of
∼ 0.01M� and an orbital period of a few hours.

If one starts the evolution with a larger initial orbital period (curve labeled UC in Figure
2.7), one obtains an ultracompact binary. It is hard to determine what exact initial conditions
lead to this type of evolution because of the sensitivity of the bifurcation (between this type
of evolution and the one discussed in the next paragraph) to the initial conditions. This
bifurcation becomes clearer when looking at the full evolutionary grid. With a larger initial
period, the donor star tends to be more evolved at the beginning of its mass-transfer phase.
The resulting evolution of ultracompacts resembles the evolution of Cataclysmic Variables,
but the orbital period shrinks to much smaller minimum values on the order of a few minutes.

If one starts with an even larger initial orbital period (curves labeled G1 and G2 in Figure
2.7), the donor star will have the time to evolve to become a giant before its mass-transfer
phase. With a large radius, the mass-transfer rates during this type of evolution are very
high, sometimes above the Edmonton limit. In this case, the orbital period increases instead
of decreasing. In the end, the donor star has no more mass to transfer and it collapses to
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become a white dwarf. It then forms a so-called binary millisecond pulsar (BMSP) with the
mass of the white dwarf ranging from 0.15M� to 0.7M� and with an orbital period above
10 hours.

2.4.2 Evolutionary Grids and More Evolutionary Tracks

Let us now look at the big picture. In Figure 2.8, one sees the results of two evolutionary
grids. The red boxes delimit the set of equally-spaced initial conditions. In panel a), the
computed grid includes 4,200 models which comprises 60 initial donor masses over the range
of 1.0 − 4.0M� and, for each of these, 70 initial orbital periods over the range of 10 − 250
hr. In panel b), Lin et al. [90] computed ten times more models; i.e., for each initial donor
masses, there were 700 initial orbital periods instead of 70. An initial mass of 1.4M� was
used in any case. Note that every initial condition evolved towards the three channels defined
previously (CV, UC, G). The color code in both graphs indicates the logarithmic relative
probability of finding an X-ray binary of a given orbital period and donor star mass at the
present epoch. The red color indicates a probability 1000 times greater than the green and
106 times greater than the blue. That way, one can see, for example, that finding an X-ray
binary in a CV-like evolution is much more probable than finding an ultracompact binary.

In general, both panels a) and b) of Figure 2.8 show the same features. Obviously, Lin et
al. [90] have a denser graph because they computed the evolution of ten times more systems,
but other than that, the same evolutionary paths are reproduced with similar probabilities.
For now, it is thus not possible to comment on the effects of the binding energy of neutron
stars on the evolution of X-ray binary systems.

Earlier, we mentioned the existence of a bifurcation between an evolution towards smaller
donor star masses and smaller orbital periods (CV-like evolution and ultracompacts) and an
evolution towards the formation of binary millisecond pulsars (giants). This means that
for very similar initial conditions, it is possible to end up with completely different binary
systems. For example, around an orbital period of 20 hours and a donor star mass of 0.2M�
in Figure 2.8, one can see some tracks that are very close to finishing their evolution as
binary millisecond pulsars, but that rather become ultracompacts.

In Figure 2.9, one can see a plot of the mass-transfer rate as a function of the orbital
period for the same evolutionary grid shown in panel a) of Figure 2.8. For Porb < 10 hours,
one is looking at mostly the CV-like evolutionary tracks and the ultracompacts. In this
region, the mass-transfer rate is mostly below Ṁedd ∼ 10−8M�/yr, albeit for orbital periods
below ' 0.6 hours, there are a few peeks in the mass-transfer rate that go above 10−8M�/yr.
These peaks come from the ultracompacts that reach very short minimum orbital periods.
One can also note the presence of the period gap in between Porb ' 2.5 hours and Porb ' 3
hours (a feature common to Cataclysmic Variables).

For Porb > 10 hours, we find that the donors largely become giants that evolve to become
binary millisecond pulsars. The main difference in this region is that the mass-transfer rates
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Figure 2.8: a) Evolutionary grid of 4, 200 systems using MESA with a correction to Ṁedd and
considering the binding energy of neutron stars. b) Evolutionary grid of 42, 000 computed
by Lin et al. [90] with an earlier version of MESA. Note that the scale of the Period-axis is
different in graph a) and b).
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Figure 2.9: Mass-transfer rate as a function of the orbital period for the same evolutionary
grid of 4,200 binary systems described in the text.

are much larger. In fact, some of the tracks reach close to Ṁ2 = 10−4M�/yr, but obviously,
as the color indicates, the binary systems that reach very high mass-transfer rates do not
spend a lot of time in that state.

Now, let us look at a few evolutionary tracks in more detail. First, let us look at Figure
2.10. This system started as an intermediate mass donor star in a ' 2 day period. In this
case, there are two main phases to the evolution. Looking at the mass-transfer rate, there is
a first large peak close to 0.01 Gyrs. At this point, looking at the mass of the system, one sees
that the donor star loses a lot of mass (blue curve), but the mass-transfer rate being larger
than the Eddington limit, the neutron star accretes barely any mass (red curve). At this
point, as long as M2 > M1, the orbital period decreases, but when the neutron star becomes
more massive than the donor, the orbital period increases. Then, at ' 0.06 Gyrs, there is
another enhanced mass-transfer phase that starts when the donor star has no more hydrogen
at its center. For this case, however, the mass-transfer rate stays below the Eddington limit
(or does not go very far above the limit). Thus, the neutron star accretes most of its mass
during this phase, and given the increasing differences betweenM1 andM2, the orbital period
significantly increases. Once this phase is over, the donor star burns helium in its center, and
the mass fractions of oxygen and carbon become dominant. Also, the radius of the donor
shrinks to ∼ 1% the radius of the Sun. In fact, the donor star becomes a carbon-oxygen
(CO) white dwarf.
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Figure 2.10: The six graphs are functions of evolution time minus t0, where t0 represents the
moment where mass transfer starts. From left to right and from top to bottom, we have: the
orbital period, the radius of the donor star, the surface temperature of the donor star, the
mass of the stars in the binary system (blue for the donor star, red for the neutron star), the
mass-transfer rate, and the composition of the donor star, where blue, cyan, green, red, and
black represent respectively the mass fractions at the center of H, He4, C12, O16, and H at
the surface. The initial conditions for this evolution are M1,i = 1.4M�, M2,i = 3.20M� and
Porb,i ∼= 52.48 hours. The final values areM1,f

∼= 1.77M�,M2,f
∼= 0.43M� and Porb,f ∼= 283.8

hours.
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Figure 2.11: Same description for the graphs as for Figure 2.10. The initial conditions for
this evolution are M1,i = 1.4M�, M2,i = 3.10M� and Porb,i ∼= 87.10 hours. The final values
are M1,f

∼= 1.47M�, M2,f
∼= 0.50M� and Porb,f ∼= 434.2 hours.
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Figure 2.12: Same description for the graphs as for Figure 2.10. The initial conditions for
this evolution are M1,i = 1.4M�, M2,i = 2.20M� and Porb,i ∼= 22.91 hours. The final values
are M1,f

∼= 2.43M�, M2,f
∼= 0.27M� and Porb,f ∼= 666.9 hours.

Now, let us look at the evolution depicted in Figure 2.11. In this case, one starts again
with an intermediate-mass donor star, but in a ' 3.6 day initial orbital period. Already, the
evolution is somewhat different. At the beginning, around 0.0002 Gyrs, the mass-transfer
rate peaks above the Eddington limit, so the donor loses a lot of mass, but the neutron star
accretes almost nothing. The orbital period decreases a little, but rapidly, the donor star
becomes less massive than the neutron star, and the orbital period increases significantly.
Note that the noise in the mass transfer curve is not physical. This is due to having a time
step that is too large to have a good resolution. However, this allows for faster computations,
which is significant for large simulations, and the end results remain correct. Note that
because the evolution started with a larger orbital period, the donor starts its mass-transfer
phase with already no more hydrogen at its center. Thus, helium burns after the first
mass-transfer peak and there is no second mass-transfer phase such as in the previous case.
Therefore, the donor ends as a carbon-oxygen white dwarf once again, but the neutron star
has not accreted a lot of mass.

Looking at Figure 2.12, one starts with a smaller donor star (2.2M�) in a ' 23 hour
period. This time, one finds again two main phases. During the first mass-transfer phase, the
mass-transfer rate is above the Eddington limit, but not by a large fraction, so the neutron
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Figure 2.13: Same description for the graphs as for Figure 2.10. The initial conditions for
this evolution are M1,i = 1.4M�, M2,i = 1.39M� and Porb,i ∼= 158.49 hours. The final values
are M1,f

∼= 2.08M�, M2,f
∼= 0.32M� and Porb,f ∼= 2476.9 hours.

star manages to accrete some mass. Then, because of the smaller initial orbital period,
one notes that the initial radius is smaller than seen before, and the donor star has burned
less hydrogen. Thus, a second mass-transfer phase starts when all the hydrogen is burned.
The mass-transfer rate being smaller than the Eddington limit, the neutron star accretes a
significant amount of mass, and the orbital period increases substantially. Also, the radius
drops, and the system ends with a massive neutron star and a helium-core white dwarf.

Starting with different initial conditions (M2,i ' M1,i, ' 6.6 day period), one observes
a rather different evolution looking at Figure 2.13. With such a large initial period, the
donor star has no more hydrogen at its core at the beginning of mass transfer. The mass-
transfer rate then stays below the Eddington limit (or only slightly above), and the neutron
star accretes a lot of mass. The composition remains the same, the donor shrinks, and the
system ends with a massive neutron star and a helium-core white dwarf.
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2.4.3 Ends Points and Binary Millisecond Pulsars

In the previous section, the evolutionary tracks of a few LMXBs and IMXBs were shown.
In general, the donor star ended its evolution as a white dwarf. The resulting neutron star-
white dwarf system is called a binary millisecond pulsar (introduced in Section 2.4.1), since
the neutron is spun up by mass accretion to become a millisecond pulsar (see Tauris & van
den Heuvel [157], and references therein, for a general discussion on the formation of binary
millisecond pulsars).

Table 2.1: Observed properties of many binary millisec-
ond pulsars.

Pulsar Name [Ref.] MWD (M�) MNS (M�) Porb (hour)2

J0034-0534 [9] ≥ 0.14 – 38.14
J0218+4232 [104, 85] ≥ 0.16 – 48.69

J0437-4715 [172] 0.254± 0.014 1.76± 0.20 137.79
J0613-0200 [94] ≥ 0.13 – 28.76

J0621+1002 [154, 111] 0.97+0.27
−0.15 1.70+0.10

−0.17 199.65
J0751+1807 [110, 111] 0.191± 0.015 1.26± 0.14 6.32
J1012+5307 [24, 113] 0.156± 0.02 1.64± 0.22 14.5

J1023+0038 [18] ∼ 0.2 – 4.8
J1045-4509 [9, 165] ≥ 0.16 ≤ 1.48 98.00
J1141-6545 [16] 1.02± 0.01 1.27± 0.01 4.74
J1232-6501 [27] ≥ 0.14 – 44.72
J1435-6100 [27] ≥ 0.9 – 32.52
J1454-5846 [27] ≥ 0.87 – 298.15
J1455-3330 [94] ≥ 0.27 – 1828.19
J1528-3146 [69] ≥ 0.94 – 76.33
J1600-3053 [69] ≥ 0.2 – 344.36
J1603-7202 [95] ≥ 0.29 – 151.41
J1614-2230 [35] 0.500± 0.006 1.97± 0.04 208.48
J1643-1224 [94] ≥ 0.13 – 3528.42
J1713+0747 [155] 0.28± 0.03 1.53+0.08

−0.06 1627.80
J1738+0333 [4] 0.181+0.007

−0.005 1.47+0.07
−0.06 8.51

J1741+1351 [69] ≥ 0.24 – 392.04
J1745-0952 [70] ≥ 0.11 – 118.64
J1802-2124 [41] 0.78± 0.04 1.24± 0.11 16.77

2Note that the value written for the orbital period is rounded to the last digit given the high accuracy
with which it can be measured.
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J1804-2718 [95, 165] ≥ 0.21 ≤ 1.73 267.6
J1810-2005 [70] ≥ 0.28 – 360.29
J1816+4510 [72] 0.193± 0.012 1.84± 0.11 8.66
J1853+1303 [52] 0.33− 0.37 1.4± 0.7 2775.69

B1855+09 [73, 109] 0.258± 0.028 1.57+0.12
−0.11 295.92

J1903+0327 [44]!!! 1.029± 0.008 1.667± 0.021 2284.18
J1904+0412 [27] ≥ 0.22 – 358.42
J1909-3744 [68] 0.2038± 0.0022 1.438± 0.024 36.80
J1910+1256 [52] 0.30− 0.34 1.6± 0.6 1403.20
J1911-1114 [95] ≥ 0.12 – 65.20
J1918-0642 [70] ≥ 0.24 – 261.92
J1933-6211 [69] ≥ 0.32 – 307.67
B1957+20 [171] 0.035± 0.002 2.40± 0.12 9.17
J2016+1948 [52] 0.43− 0.47 1.0± 0.5 15240.57
J2019+2425 [108] ∼ 0.35 ≤ 1.51 1836.28
J2129-5721 [95] ≥ 0.14 – 159.01
J2145-0750 [9] ≥ 0.43 – 164.13

J2317+1439 [25, 178] ≈ 0.21 – 59.02

Table 2.2: Observed properties of many binary millisec-
ond pulsars in globular clusters.

Pulsar Name [Ref.] Globular Cluster MWD (M�) MNS (M�) Porb (d)

J0024−7205E [45] 47 Tuc ≥ 0.15 – 2.256844820
J0024−7204H [45, 80] 47 Tuc 0.18+0.086

−0.016 1.48+0.03
−0.06 2.35769683

J0024−7204I [45] 47 Tuc ≥ 0.013 – 0.229792249
J0023−7203J [45] 47 Tuc ≥ 0.021 – 0.12066493779
J0024−7204O [45] 47 Tuc ≥ 0.022 – 0.1359743050

J0024−7204P [26, 8] 47 Tuc ∼ 0.02 – 0.1472
J0024−7204Q [45] 47 Tuc ≥ 0.18 – 1.189084048

J0024−7204R [26, 8] 47 Tuc ∼ 0.03 – 0.0662
J0024−7204S [45] 47 Tuc ≥ 0.088 – 1.201724235
J0024−7204T [45] 47 Tuc ≥ 0.17 – 1.126176767
J0024−7203U [45] 47 Tuc ≥ 0.12 – 0.4291056833

J0024−7204V [26, 8] 47 Tuc ∼ 0.35 – 0.227
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J0024−7204W [26, 8] 47 Tuc & 0.133 – 0.1330
J0024 – 7204Y [26, 8] 47 Tuc ∼ 0.16 – 0.52194
J0514 – 4002A [47, 80] NGC 1851 ≥ 0.96 1.49+0.04

−0.27 18.78517915
B1310+18 [8] M53 ∼ 0.35 – 255.8

J1342+2822B [8] M3 ∼ 0.21 – 1.41735
B1516+02B [48] M5 0.172+0.107

−0.023 2.09+0.18
−0.19 6.8584538

J1518+0204D [8] M5 ∼ 0.20 – 1.22
J1518+0204E [8] M5 ∼ 0.15 – 1.10
J1546 – 3747A [97] NGC 5986 ≥ 0.16 – 1.3467116
B1639+36B [8] M13 ∼ 0.19 – 1.25911
J1641+3627D [8] M13 ∼ 0.18 – 0.591
J1641+3627E [8] M13 ∼ 0.02 – 0.117
J1701 – 3006A [96] M62 ≥ 0.2 – 3.8059483732
J1701 – 3006B [96] M62 ≥ 0.12 – 0.1445451718
J1701 – 3006C [96] M62 ≥ 0.071 – 0.21500007119
J1701 – 3006D [96] M62 ≥ 0.12 – 1.1179034034
J1701 – 3006E [96] M62 ≥ 0.031 – 0.1584774951
J1701 – 3006F [96] M62 ≥ 0.021 – 0.2054870422
B1718 – 19 [8] NGC 6342 ∼ 0.13 – 0.25827

J1740 – 5340A [33, 8] NGC 6397 ≥ 0.18 – 1.35406
J1748 – 2021B [46] NGC 6440 0.142+0.086

−0.018 2.74+0.21
−0.22 20.5500072

J1748 – 2021D [46] NGC 6440 ≥ 0.12 – 0.2860686769
J1748 – 2021F [46] NGC 6440 ≥ 0.30 – 9.83396979

J1748 – 2446A [8, 130] Ter5 ≥ 0.089 – 0.075646
J1748 – 2446E [130] Ter5 ≥ 0.22 – 60.06
J1748 – 2446I [130] Ter5 ≥ 0.24 1.91+0.02

−0.10 1.328
J1748 – 2446J [130] Ter5 ≥ 0.38 1.79+0.02

−0.10 1.102
J1748 – 2446M [130] Ter5 ≥ 0.14 – 0.4431
J1748 – 2446N [130] Ter5 ≥ 0.48 – 0.3855
J1748 – 2446O [130] Ter5 ≥ 0.036 – 0.2595
J1748 – 2446P [130] Ter5 ≥ 0.38 – 0.3626
J1748 – 2446V [130] Ter5 ≥ 0.12 – 0.5036
J1748 – 2446W [130] Ter5 ≥ 0.30 – 4.877
J1748 – 2446Y [8, 130] Ter5 ≥ 0.14 – 1.16443
J1748 – 2446ad [8] Ter5 ∼ 0.16 – 1.09443

3The companion star is not a white dwarf but a main sequence star according to Bogdanov et al. 2005
[19].
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J1748 – 2446ae [8] Ter5 ∼ 0.019 – 0.17073
J1750 – 3703A [46] NGC 6441 ≥ 0.53 ≤ 1.65 17.3342759
J1750 – 3703B [46] NGC 6441 ≥ 0.17 – 3.60511446
J1801 – 0857B [98] NGC 6517 ≥ 0.33 – 59.8364526

B1802-07 [164, 6, 165] NGC 6539 0.33± 0.08 1.26+0.08
−0.17 2.61676335

J1807 – 2459A [96] NGC 6544 ≥ 0.0092 – 0.071091483516
J1807 – 2459B [96] NGC 6544 1.2064± 0.0020 1.3655± 0.0021 9.9566681588
J1824 – 2452C [48] M28 ≥ 0.260 ≤ 1.367 8.07781
J1824 – 2452G [8] M28 ∼ 0.011 – 0.1046

J1824 – 2452H [117, 8] M28 ∼ 0.20 – 0.43502743
J1824 – 2452I [8] M28 ∼ 0.20 – 0.45941
J1824 – 2452J [8] M28 ∼ 0.015 – 0.0974
J1824 – 2452K [8] M28 ∼ 0.16 – 3.91034
J1824 – 2452L [8] M28 ∼ 0.022 – 0.22571
J1836 – 2354A [98] M22 ≥ 0.017 – 0.2028278011
J1905+0154A [8] NGC 6749 ∼ 0.090 – 0.81255
J1910 – 59 [33] NGC 6752 ≥ 0.19 – 0.865

J1910 – 5959A [30] NGC 6752 0.180± 0.018 1.33± 0.11 0.83711347691
J1911 – 5958A4 [11, 8] NGC 67525 0.18± 0.02 1.40+0.16

−0.10 0.83711
J1911+0102A [8] NGC 6760 ∼ 0.020 – 0.140996
J1953+1846A [8] M71 ∼ 0.032 – 0.1766

J2140 – 2310A [131] M30 ≥ 0.1 – 0.17398746418

Table 2.1 lists some observed binary millisecond pulsars and their properties. While
the orbital period can be computed very accurately, the same is not true for the masses
of the component stars. Indeed, the uncertainty due to the unknown inclination angle of
these binary systems makes it hard to compute the mass of the neutron star and of its
companion. For most systems, it is only possible to have a lower bound on the companion’s
mass. However, for other systems, the mass of the pulsar can be estimated with a proper
analysis of the Shapiro radio delay (e.g., [68, 156]).

Our goal is to compare the end points of every evolutionary tracks computed in the grid
shown in Figure 2.8 together with the observed binary millisecond pulsars. This is exactly
what Figure 2.14 shows. Looking at panel a), the final orbital period as a function of the final
donor star mass, one can see that the observed properties of most of the binary millisecond
pulsars can be explained by the numerical simulations in this work. Note that the presence
of a blue-green line this figure. It represents a possible relationship between the orbital

4I’M NOT SURE IF THAT’S NOT THE SAME BMSP THAN THE ONE ABOVE (J1910-5959A)...
5Bassa et al. 2006 [11] discuss the fact that PSR J1911-5958A might be a field oject rather than part of

the globular cluster NGC 6752. However, they cannot confirm nor disprove this fact.
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period and the white dwarf’s mass for binary millisecond pulsars. Although there exists
many formulae for the Porb,f −M2,f relation (e.g., [133, 160, 106]), this work compares its
results with the formula of Lin et al. [90]. It turns out that the curve matches the numerical
results of this thesis. In general, the end points shown in Figure 2.14 match the results of
Lin et al. [90] obtained with an earlier version of the MESA code (different treatment of the
physics of mass accretion onto a neutron star).

Looking at panel b) of Figure 2.14, the conclusion is rather different. Although a few
binary millisecond pulsars have massive neutron stars, most of them have masses in the range
1.2−1.8M� with white dwarfs of small masses (0.15−0.30M�). However, the computations
produced mainly massive neutron stars (1.9 − 2.6M�) with small white dwarfs and small
neutron stars with massive white dwarfs. Thus, there seems to be a disagreement between
the observations and the theoretical model.

Note that Lin et al. [90] did not consider the effects of the binding energy of neutron stars.
Because of that, their work shows even more massive neutron stars where smaller neutron
stars would be desired. Thus, this work shows an improvement in terms of producing smaller
neutron stars because of their binding energy, but still, the neutron stars would need to be
smaller to match the observations.

2.4.4 The Effects of Changing the Maximum mass-transfer fraction

One way to produce less massive neutron stars is to limit the mass-transfer fraction; i.e.,
reduce the value of βmax. Recalling Equation 2.101 and the definition of β, it is easy to see
that small values of βmax would seriously reduce the accretion rate of the neutron star, Ṁ1.
Thus, the neutron star would accrete less mass throughout the evolution of the X-ray binary
system. In the end, the mass of the neutron stars would probably be closer to the observed
values.

There are reasons to believe that purely conservative mass transfer (βmax = 1) does not
occur. Indeed, relativistic jets or high radiation pressures causing wind emanating from the
atmosphere of the accretion disk could lead to inefficient accretion. Also, the propeller effect
might be important. The propeller effect (first introduced by Illarionov & Sunyaev [66])
takes place when the magnetospheric radius is larger than the corotation radius, i.e., when
(see Rappaport et al. [132])

rm ' (GM1)
−1/7 Ṁ

−2/7
1 µ4/7 > rc =

(
GM1

ω2
NS

)1/3

, (2.126)

where µ is the magnetic dipole moment of the neutron star. When this happens, the cen-
trifugal force pushes matter away from the neutron star, and consequently, from the X-ray
binary system. There has been observational evidence of the propeller effect in some X-ray
pulsars (e.g., [32, 179]).
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a)

b)

Figure 2.14: End points of the evolutionary grid presented in Figure 2.8a). The blue line
in panel a) comes from Lin et al. [90]. The observed binary millisecond pulsars (the red
squares together with their uncertainty bars) are taken from Table 2.1.
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The value that βmax should take is not obvious though. For example, Podsiadlowski et
al. [122] and others (e.g., [160, 107, 15]) used βmax = 0.5, and Lin et al. [90] used βmax = 0.9,
somewhat arbitrarily. Also, Nelson et al. [106] tested βmax = 0 (completely non-conservative
mass transfer) as a limiting case, but they acknowledge that this value is highly uncertain.
The value of βmax = 1 has been used so far in this thesis, and this is what will be used the
the following chapters. This can also be viewed as a limiting case, keeping in mind that
neutron star can accrete less than what is found via ad hoc non-conservative mass transfer.

In order to better understand the effects of modifying βmax, one can compute similar
grids to panel a) of Figure 2.8, and change the value of βmax. De Vito and Benvenuto [36]
tried to do something similar by computing small evolutionary grids with several values of
βmax. Although, they were able to quantify the effects of changing βmax, they were not able
to conclude what the value of the maximum mass-transfer fraction should be.

Let us look at the effects of changing βmax. Figure 2.15 shows the same evolutionary grid
as panel a) of Figure 2.8, but with different values of βmax: panel a) shows βmax = 0.5 and
panel b) shows βmax = 0. In general, the evolutionary paths do not seem to be modified, so
one has to look at the end points to really grasp the magnitude of the effect.

Looking at panel a) of Figure 2.16, one can see that for βmax = 1 and βmax = 0.5, the
end points are really similar. The case βmax = 0 produced systems with slightly shorter final
orbital periods, but the effect does not seem to be too important. Looking at panel b), one
can see the three cases completely dissociated from one another. Obviously, for the case
βmax = 0, the final neutron star mass is 1.4M�, the same as the natal mass since none of
the mass transferred is accreted onto the neutron star. For the case βmax = 0.5, it is fair
to say that the final neutron stars have masses half-way between the βmax = 1 case and the
βmax = 0 case. The βmax = 0 and βmax = 0.5 cases have the advantage of reproducing the
observed properties of the smaller neutron stars as expected and as wanted, but there is a
caveat. Focusing on the observed system PSR J1614-2230 with MNS = 1.97± 0.04M� and
MWD = 0.500 ± 0.006M�, one can see that none of the models in panel b) of Figure 2.16
can reproduce the observations. This system could not be explained with M1,i = 1.4M�
and βmax = 1, but with smaller values of βmax, the final values deviated even more. With
conservative mass transfer, it is possible to reproduce the properties of this system with
M1,i = 1.6M� (see Section 4.2.2, and Lin et al. [90] who uses βmax = 0.9). However, if one
assumes non-conservative mass transfer (say βmax . 0.5), then it becomes really difficult to
explain the observed properties of PSR J1614-2230 since it would require a really large natal
mass for the neutron star.

To summarize, it seems that with βmax = 1, the numerical simulations produce systems
with final orbital periods and final donor star masses that match most of the observed binary
millisecond pulsars. However, the results produce neutron stars that seem to have accreted
too much matter compared to the observed systems. Thus, to resolve this issue, one has
to either claim that mass transfer is highly non-conservative (probably 0 ≤ βmax . 0.5) or
that the natal mass of the neutron star has to be smaller (different natal masses for the
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Figure 2.15: Same description as panel a) of Figure 2.8. Panel a) shows the results with
βmax = 0.5 and panel b) shows the results with βmax = 0.0.
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a)

b)

Figure 2.16: End points of the evolutionary grids shown in Figure 2.15. Note that the black
dots show βmax = 1, the green dots show βmax = 0.5, and the blue dots show βmax = 0.0.
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neutron stars will be tested in Section 4.2.2). However, if mass transfer is non-conservative,
it becomes really difficult to reproduce the observed properties of PSR J1614-2230 even with
a larger natal mass for the neutron star. The solution to this issue might reside in the effects
of self-induced irradiation as will be discussed in the following chapters.



Part II

The Effects of Self-Induced Irradiation
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Chapter 3

X-ray Irradiation: The Model

The physics of X-ray irradiation (or heating) of the donor star has been completely ignored
so far in our study. It is important to note that X-ray irradiation has been ignored in many
studies of X-ray binary evolution (e.g., [134, 177, 133, 160, 122, 106, 90, 158, 36]) and it is
still an open question as to whether or not irradiation should be taken into consideration in
X-ray binary evolution. The goal of the following chapters is to find how important are the
effects of X-ray irradiation.

X-ray irradiation occurs when the charged particles in the accretion disk of the neutron
star are accelerated and radiate X-rays. If some of the X-rays are intercepted by the donor
star, then the X-ray photons penetrate the photosphere of the donor and deposit extra energy
in the outer envelopes. The extra energy destabilizes the donor star, which then increases its
radius as the star attempts to attain thermal equilibrium. With a larger radius, more mass
of the donor star overflows the Roche lobe, thus increasing the mass-transfer rate. Therefore,
it is expected that this effect modifies the evolution of X-ray binary systems.

Astrophysicists started investigating the effects of X-ray irradiation as early as the 1970s
and 1980s (e.g., [5, 12, 112, 54, 74, 144]); it is only at the beginning of the 1990s that
they began to understand why this might be important in X-ray binary evolution (e.g.,
[120, 161, 58, 42, 55]). Podsiadlowski [120, 121] (and Hameury et al. [55, 56] a few years
later) showed that a constant irradiation flux increased the radius of low-mass stars (see
Figure 3.1).

Then, other groups investigated the effects of irradiation in the 1990s (e.g., [21, 34, 51,
163, 59, 136, 162, 174, 60, 75, 76, 138, 57, 77]), and soon thereafter, they began to compute
evolutionary tracks considering the effects of irradiation for Cataclysmic Variables (e.g.,
[100]) and for low-mass X-ray binaries (e.g., [139, 22, 23, 137, 15]). However, none of them
had computed a full evolutionary grid to understand the overall effect of X-ray irradiation.

The rlo test suite in the MESA code offers the possibility of including X-ray irradiation in
X-ray binary evolution, but this is done rather crudely. For this reason, a more sophisticated
model is built in thesis. Sections 3.1 and 3.2, respectively, show the theory behind X-ray
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Figure 3.1: Equilibrium radius, R, as a function of external irradiation flux, F , for unevolved
stars of mass M (taken from Podsiadlowski [120]). Hameury et al. [55, 56] obtained similar
results.

irradiation and the model built in this thesis to include the effects of irradiation. Then,
Section 3.3.2 shows evolutionary track including the effects of X-ray irradiation.

3.1 Irradiation Flux
First of all, it is necessary to know what X-ray flux irradiates the donor star. The irradiating
luminosity, Lirr, is really only the luminosity of the neutron star. So, replacing L1 by Lirr
in Equation 2.92, one has

Lirr =
GM1Ṁ1

R1

. (3.1)

Then, assuming that the X-rays are emitted isotropically, the irradiating flux at the surface
of the donor star can be expressed as

Firr =
Lirr
4πa2

=
GM1Ṁ1

4πa2R1

. (3.2)

However, there are strong reasons to believe that not all this X-ray flux reaches the donor
star. Indeed, it might be possible that the accretion disk of the neutron star intercepts a
fraction of the X-rays, thus reducing Firr. Unfortunately, the theory of accretion disk physics
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Figure 3.2: Geometry of an X-ray binary system (taken from King et al. [76]).

is an active field of research on its own (for an introduction on the subject, see for example,
[167, 78, 43], and references therein, or any standard high-energy astrophysics textbook such
as [93, 81, 101, 91]). Thus, computing what fraction of the total X-ray flux could traverse
a certain type of accretion disk would require intensive computations. Moreover, it is not
even well understood what kind of accretion disk is formed around neutron stars in X-ray
binaries, thus making the calculations rather uncertain. For those reasons, it is preferred for
this thesis to simply introduce an efficiency factor η (as Hameury et al. [55] and many others
do, e.g., [59, 100, 139, 22, 23]). This factor accounts for the fraction of the total X-ray flux
that reaches the surface of the donor star. Therefore, Equation 3.2 must be modified:

Firr =
ηGM1Ṁ1

4πa2R1

. (3.3)

Obviously, this equation is valid at the surface point aligned with the center of both the
donor star and the neutron star. At different points on the surface, a geometrical factor
must be taken into account. Therefore,

Firr(θ) =
ηGM1Ṁ1

4πa2R1

h(θ) , (3.4)

where h(θ) is the geometrical factor and θ is the angle shown in Figure 3.2.
King et al. [76] have an equation for the geometrical factor,

h(θ) =
cos(θ)− f2

(1− 2f2 cos(θ) + f 2
2 )

3
2

, (3.5)
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with f2 ≡ R2/a. Although this equation has been reused in several articles (e.g., [57, 100,
139, 22]), we believe that it should be

h(θ) =
cos(θ)− f2

(1− 2f2 cos(θ) + f 2
2 )

1
2

. (3.6)

A proof of this can be found in Appendix A.1 of this work.
Hameury et al. [55], Harpaz & Rappaport [59], and Becker et al. [13] came up with

prescriptions for the efficiency factor η that would qualitatively have the desired properties
for a shielding term. For instance, Hameury et al. used

Lirr =

ηL1

(
R2

2a

)2
if Ṁ2 < Ṁedd

ηLedd
(
R2

2a

)2 (Ṁ2/Ṁedd)
2

e|Ṁ2|/Ṁedd−1
if Ṁ2 ≥ Ṁedd

, (3.7)

and Harpaz & Rappaport used

Lirr =

{
ηL1

(
R2

2a

)2
if Ṁ2 < Ṁedd

ηLedd
(
R2

2a

)2
exp

(
1− |Ṁ2|

Ṁedd

)
if Ṁ2 ≥ Ṁedd

. (3.8)

In both cases, η is arbitrarily taken to be 0.1. Note that the factor (R2/2a)2 approximately
accounts for the geometry of the system.

Rather than using some of these ad hoc equations, this work simply uses Equation 3.4
and tests different values of η. In particular, the following values are tested: η = 0.05, 0.1,
0.5, and 1.0 (see Chapter 4). Testing different values for η is what is done by several other
groups (e.g., [174, 100, 139, 22, 15]).

As discussed in Section 2.3.2, there is some uncertainty regarding the choice of R1, but
for the reasons explained in Section 2.3.2, a constant value of 11.5 km is taken throughout
this thesis.

3.2 Energy Deposition
Now, the effects of irradiation can only take place if the X-ray irradiating flux reaches the
photosphere of the donor star. To verify this, let us first do a few calculations from first
principles. The hydrostatic equation of stellar structure, dP

dr
= −gρ, combined with the ideal

gas law, P = ρNAkBT/µ, (which implies that dP
dr

= dρ
dr
NAkBT/µ) yields

− gρ =
1

µ

dρ

dr
NAkBT , (3.9)
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which can be integrated from the surface of the star (r = R), to an arbitrary radius, r. Thus,

ρ(r) = ρs exp

[
µg

NAkBT
(R− r)

]
. (3.10)

Introducing the column depth (Σ) which is defined to satisfy

dΣ

dr
= −ρ , (3.11)

one can integrate from infinity to an arbitrary radius to find (letting Σ→ 0 as r →∞)

Σ(r) =
ρsNAkBT

µg
exp

[
µg (R− r)
NAkBT

]
. (3.12)

Solving for r yields

r =

[
1− kBT

µgR
ln

(
Σµg

ρskBT

)]
R . (3.13)

It is thought that for X-rays in the energy range of 1 − 10 keV, the column depth is of the
order Σ ∼ 0.01 − 1 g/cm2 (e.g., [59]). A standard value of 1 g/cm2 is adopted in the MESA
code to crudely model the effects of irradiation. Thus, taking Σirr = 1 g/cm2 and standard
values for temperature, density, and gravity (say for the Sun), one finds

rirr ∼= 1.0005R� . (3.14)

This would mean that X-rays would deposit energy right above the photosphere of the Sun.
However, it could be that the column depth for X-rays is larger than 1 g/cm2, which would
allow the X-rays to propagate below the photosphere. Also, even if the X-rays do not reach
the photosphere at the beginning of the mass-transfer phase, the X-rays will heat up the
atmosphere, which will make it become more optically thin to X-rays (see Brett & Smith
[21]), and consequently, the X-rays will penetrate deeper into the atmosphere and, ultimately,
penetrate the photosphere as expected.

Under these assumptions, the atmosphere of the donor star will be ignored and it will
be assumed that X-rays reach the photosphere of the star with the flux given by Equation
3.3. The next step is to determine the penetration depth of the X-rays and the energy they
deposit in the donor star. As this point, many groups (e.g., [120, 55, 59, 100, 139, 22])
greatly simplify the problem by assuming that the X-ray energy deposition is completely
equivalent to changing the donor star’s effective surface boundary condition. In other words,
the blackbody luminosity at the surface of the star,

Ls = 4πR2σSBT
4
eff , (3.15)
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becomes (e.g., [55, 139])

Ls = 4πR2σSBT
4
eff − Lirr = 4πR2 (1− seff )σSBT 4

eff , (3.16)

where seff is a function of Firr. However, given the sophistication of the MESA code used in
this thesis, we can obtain much more accurate results by performing Monte-Carlo simulations
to determine the most probable penetration depth of the X-ray photons in the donor star.
Then, it is easy to modify the conservation of energy equation of stellar structure at the
appropriate depth by adding a factor εirr; recalling Equation 2.8, we have

∂Lm
∂m

= ε− ν − T ∂S
∂t

+ εirr . (3.17)

3.2.1 Monte-Carlo Simulation

As explained in the previous section, the goal is to perform Monte-Carlo simulations to
determine the penetration depth of X-rays in a star. The idea is as follows. Using random
numbers, one generates a large number of X-ray energies that follow the energy distribution
determined from the X-ray spectrum of the neutron star. Then, for each X-ray energy, one
expects the optical depth (τ) of the photon to follow a probability distribution of the form

dP
dτ

∝ e−τ , (3.18)

where P is the probability. Recall that dτ = κρdz where κ = σn/ρ is the opacity, n is the
number density, σ is the cross-section of the X-ray photon, and z is the depth below the
photosphere of the donor star. Introducing the mean free path λ = 1/nσ, one has dτ = 1

λ
dz

and τ = z/λ. Thus, one can rewrite Equation 3.18 as follows:

dP
dz

∝
e−

z
λ

λ
. (3.19)

Obviously, since the mean free path λ depends on the cross-section, λ depends on the X-ray
energy that has been generated (this will be discussed more in depth in Section 3.2.3). Then,
for each X-ray energy generated, one generates another random number, say rand, and one
requires ∫ z

0
dP
dz′
dz′∫∞

0
dP
dz′
dz′

= rand , (3.20)

which implies
z = −λ ln (rand) . (3.21)

One ends up with a probability distribution of the X-ray energy as a function of the depth
below the photosphere. An example is shown in Section 3.2.5.
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3.2.2 Neutron Star X-ray Spectrum

As seen in Section 3.2.1, to perform Monte-Carlo simulations to determine the penetration
depth of X-rays, the X-ray spectrum of those X-rays has to be known. Although astronomers
can fit nice power-law distributions, black-body distributions, thermal bremsstrahlung dis-
tributions, or combinations of them to X-ray binary spectra (e.g., [147, 29, 67, 146]), it is
hard to predict the exact shape of these spectra theoretically (e.g., [151, 168, 141, 124, 142]).
The general consensus is that for lower photon energies, the spectrum follows a black-body
distribution, and for higher energies, the spectrum follows a power law with a high energy
cut-off. Thus, one can write

dP
dE

∝

{
E2

eE/kBT0−1 if E . E0

E−α−1e−E/Ecut if E & E0

, (3.22)

where E is the X-ray energy, T0 is the temperature of the black-body, E0 is the turning point
energy at which the power law becomes more important than the black-body distribution, α
is a parameter of the power law function, and Ecut is the cut-off energy. This thesis follows
Vilhu et al. [174] who uses α = 0.5 and Ecut = 10 keV, although other values are possible
(e.g., [168, 142]). Following Tuchman & Yahel [168], E0 ∼ 5 keV is used. Finally, a thermal
energy of kT0 = 1.16 keV is used to match the spectra obtained by Tuchman & Yahel [168]
(see Figure 3.3).

Then, using random numbers to generate X-ray energies that follow the distribution given
above would require one to solve the following equation for E:∫ E

0
dP
dE′
dE ′∫∞

0
dP
dE′
dE ′

= rand , (3.23)

where rand is some random number. However, since one cannot integrate Equation 3.22
analytically, one can again use the Monte-Carlo technique. To do this, a random number,
say Erand, is picked from Emin = 0.01 keV to Emax = 20 keV. Then, another random number,
say

(
dP
dE

)
rand

, is picked from
(
dP
dE

)
min

to
(
dP
dE

)
max

. Note that the values of
(
dP
dE

)
min

and
(
dP
dE

)
max

depend on how the function dP
dE

is normalized. Then, if
(
dP
dE

)
rand
≤ dP

dE

∣∣
E=Erand

, one obtains
Erand. If this algorithm is repeated a large number of times, the set of energies obtained will
follow the desired distribution.

3.2.3 X-ray Mean Free Path

For every Erand generated, the mean free path (λ), must be computed. Recall that

λ =
1

nσ
, (3.24)
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Figure 3.3: Simulated X-ray spectrum of a 1.4M� neutron star that follows a black-body
distribution for E . 5 keV and a power law function at higher energies (taken from Tuchman
& Yahel [168]).

where σ is the total X-ray absorption cross-section. Following Vilhu et al. [174], σ is
computed using the neutral element photoelectric absorption from Morrison & McCammon
[103], the free-free absorption by protons (H-ions) and He-ions from Basko & Sunyaev [10],
and the free electron scattering is handled by the Thomson cross-section. Therefore,

λ =
1

nneutralσneutral + kff + neσT
. (3.25)

Morrison & McCammon [103] computed the cross-section of photons in the range 0.03−
10 keV for typical cosmic abundances due to neutral elements. Since one expects no neutral
Hydrogen and no neutral Helium to be present in the donor star, the cross-section is taken
to be 0 for E . 0.12 keV (see Figure 3.4). For higher energies, the cross-section curve has
discontinuities due to the K-shell absorption edges of the element indicated in Figure 3.4.
However, it is still a good approximation to use a linear interpolation formula (see Longair
[92]),

σneutral(E)

cm2
= 2× 10−22

(
E

keV

)− 8
3

. (3.26)

One still has to subtract the neutral Hydrogen and neutral Helium from this equation for
E & 0.12 keV. One can approximate the H + He curve in Figure 3.4 with the following
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Figure 3.4: X-ray cross-section for neutral Hydrogen, Helium, and heavy elements (taken
from Morrison & McCammon [103]).

fitting function,

σH+He(E)

10−24 cm2
=

51.4772− 27.4443 log
(
E
keV

)
− 13.3857 log

(
E
keV

)2
+ 9.4055 log

(
E
keV

)3(
E
keV

)3 , (3.27)

where log is the logarithm base 10. Thus, the final cross-section due to heavy neutral elements
is

σX(E) ≡ σneutral(E)− σH+He(E) . (3.28)

The number density of neutral elements, nneutral, is computed as follows:

nneutral =
〈ρ〉NA

µ
, (3.29)

where 〈ρ〉 is the averaged density of the donor star and µ/NA ≈ 2.16×10−24 g is the averaged
mass of the neutral elements (computed from the cosmic abundances used by Morrison &
McCammon [103]). Obviously, the mass density changes as the X-rays travel in the donor
star. For this reason, the averaged mass density is computed at every shell k, from the
surface to that shell. Thus,

〈ρ〉k =
1

k

k∑
i=1

ρi , (3.30)

where the mass density ρi at the center of shell i is given by the MESA code.
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As mentioned previously, the free-free absorption by protons (H-ions) and He-ions is
computed following Basko & Sunyaev [10]. So,

kff = 3.7× 108Ne

(∑
i

NiZ
2
i

)
T−

1
2

(
E

h

)−3 (
1− e−

E
kBT

)
cm−1 , (3.31)

where Ne and Ni are the number of electrons and ions of charge Zi per unit volume, respec-
tively, T is the temperature of the donor star, and h is Planck’s constant. Considering only
H and He ions, kff is computed as follows,

kff = 3.7× 108n2
neutral 〈y〉 (0.9078 + 4× 0.0908) 〈T 〉−

1
2

(
E

h

)−3 (
1− e−

E
kB〈T 〉

)
cm−1 , (3.32)

where y is the mean number of free electrons per nucleon assuming complete ionization
(which is computed by the MESA code), 0.9078 and 0.0908 are the fractions of H and He ions
respectively, and again, 〈〉 represents the average from the surface down to shell k.

Finally, considering free electron scattering, the Thomson cross-section is well known to
be σT = 6.6524× 10−25 cm2, and the number of free electrons, ne, is calculated by the MESA
code.

It turns out that the neutral heavy elements absorption is by far the dominant source of
interaction with the X-ray photons. Indeed, a few computations showed that nneutralσX �
kff and nneutralσX � neσT . Thus, the mean free path for an X-ray photon of energy E can
be simply written as

λ(E) =
1

nneutralσX + kff + neσT
∼=

1

nneutralσneutral
=

µ

NA 〈ρ〉k σX(E)
. (3.33)

Rather than following Morrison & McCammon 1983 [103] to compute σX(E) (which is
only good for cosmic abundances of elements), one can compute the cross section σZ(E) for
each neutral element of atomic number Z following Verner & Yakovlev 1995. Then, the total
cross section is simply

σX(E) =
∑
Z

σZ(E)
nZ
nH

=
1

nH

∑
Z

σZ(E)nZ , (3.34)

where nZ is the number density of the elements of atomic number Z and nH is the number
density of hydrogen atoms. Then, the column depth becomes

dτX = κXρdz , (3.35)

where κX = σXnH/ρ, so using Equation 3.34, one gets

dτX = σXnHdz =

(
1

nH

∑
Z

σZnZ

)
nHdz =

(∑
Z

σZnZ

)
dz . (3.36)
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Figure 3.5: Geometry of X-ray Binaries. The figure shows that an X-ray penetrating down
to shell k does not travel the same distance depending on its angle of incidence. The relation
between ∆rk and ∆dk is discussed in the text.

Recalling that dτ = 1
λ
dz, one concludes that

λ(E) =
1∑

Z σZ(E)nZ
. (3.37)

3.2.4 Geometry of X-ray Binary Systems

It has been seen in Section 3.1 that the angle of incidence of the X-ray photons modifies
the irradiation flux. Furthermore, as will be shown in this section, the penetration depth of
X-rays is not the same for different angles of incidence (see Figure 3.5).

It can be shown that at a certain shell k inside the donor star, the radial thickness of the
shell, ∆rk, and the distance traveled by an X-ray photon, ∆dk, are related by the following
equation,

∆dk(δ) =
√
r2k − a2 sin2 δ −

√
r2k+1 − a2 sin2 δ , (3.38)

where the angle δ is shown in Figure 3.5. A proof of this equation can be found in Appendix
A.2.

The effect of this angle must be taken into account in the Monte-Carlo simulations.
Thus, for every X-ray energy randomly generated, a random angle is generated. Since
one assumes that the neutron star emits X-rays isotropically, one linearly selects a random
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Figure 3.6: X-ray energy as a function of penetration depth below the photosphere using
the Monte-Carlo method described in Section 3.2.5. For this example, a non-evolved 1.0M�
donor star was used. The color coding shows the relative logarithmic probability that an
X-ray photon of a given energy has to travel a given depth below the photosphere. Red is 5
times more probable than yellow, 10 times more than green, 50 times more than cyan, and
500 times more than purple.

angle, δrand, between 0 and δmax = arcsin
(
R2

a

)
. In other words, for a random number rand,

δrand = rand · arcsin
(
R2

a

)
. Then, the goal is to find at what shell k is an X-ray photon

of energy Erand going to travel a distance z, where z is given by equation 3.21. Thus, the
following equation is solved for k,

k∑
i=0

∆di(δrand) = z , (3.39)

and one obtains the final penetration depth for the given shell k, i.e., an energy Erand is
deposited in shell k.

3.2.5 Calculation

The methodology that was adopted is as follows: An energy Erand is generated such that
it follows the distribution given by Equation 3.22. Then, a random angle δrand is generated
as well as another random number, rand. Then, one computes

∑k
i=0 ∆di(δrand) and zk =

− µ
〈ρ〉kσX(Erand)

ln (rand) for k = 0, 1, 2, ..., and when one quantity becomes sufficiently close
to the other, one obtains the shell number k where the energy is deposited.

Figure 3.6 shows an example of the method outlined in the previous sections. In this
example, the penetration depth is computed for a 1.0M� unevolved donor star. The red
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region of Figure 3.6 indicates the depth where it is most probable that photons deposit
their energy. Thus, in this example, photons would be intercepted in between ' 1 km and '
1000 km below the photosphere. These depths correspond to column depths of approximately
2.1×10−2 g/cm2 and 1.7×102 g/cm2. The standard value of 1 g/cm2 for X-rays corresponds
to a depth of roughly 4×106 cm. Thus, the Monte-Carlo simulation shows that some X-rays
would be intercepted before the standard column depth and some would penetrate deeper
than 1 g/cm2.

Once the Monte-Carlo simulation is done, it is important to add the correct amount of
energy in the donor star, i.e. the correct εirr must be computed at every shell k where energy
is deposited. Note that one can write

εirr,k =
dLirr,k
dmk

∼=
Lirr,k − Lirr,k+1

∆mk

, (3.40)

where ∆mk is given by the MESA code. In general, one can write from simple geometry

Lirr,k = Firr

∫ φmax,k

−φmax,k

∫ θmax,k

−θmax,k
r2k sin θ dθdφ , (3.41)

where Firr is given by Equation 3.3. Looking at Figure 3.5, one can see that θmax,k =
arccos

(
rk
a

)
, and by spherical symmetry, φmax,k = θmax,k. So, one gets

Lirr,k = 4Firrr
2
k [φ]

arccos( rka )
0 [− cos θ]

arccos( rka )
0 = 4Firrr

2
k

(
1− rk

a

)
arccos

(rk
a

)
. (3.42)

If a total energy Ek is deposited in shell k throughout the Monte-Carlo simulation, then

εirr,k ∼=
1

∆mk

4Firr
[
r2k
(
1− rk

a

)
arccos

(
rk
a

)
Ek − r2k+1

(
1− rk+1

a

)
arccos

( rk+1

a

)
Ek+1

]∑
k Ek

, (3.43)

where the sum is over all shells k of the donor star. Then, one simply adds this value of εirr,k
in Equation 3.17 (for every shell k).

3.2.6 Non-Spherical Irradiation and the Uncertainty of η

It is important to note at this point that the model developed above assumes spherical
irradiation, that is to say that as soon as an X-ray photon deposits some energy in a shell k,
then the energy of the entire shell is instantaneously increased. However, it is obvious that
while irradiation happens, there is a “dark side” of the donor star that is not heated and that
does not receive any extra energy. Since the MESA code is only a one-dimensional code (it
assumes spherical symmetry), one cannot easily model non-spherical irradiation. The other
issue concerns the overall shape of the star (i.e., Roche geometry). Neither of these two
effects have been taken into account (note that the second one is much smaller).
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The issue of non-spherical irradiation has been explored by Hameury et al. [55] and they
came to the conclusion that the spherically symmetric model is good enough if the circulation
flow is supersonic and if η ∼ 1. Unfortunately, both conditions are probably not met most
of the time. On the other hand, Vilhu et al. [174] showed that if the energy is deposited in
a convective region of the donor star, then the heat is distributed all around the star in a
short thermal time scale relative to the evolutionary time scale.

Furthermore, it is known that there is a lot of uncertainty in the value of the efficiency
factor η. Thus, it can be assumed that the errors behind spherical irradiation instead of
non-spherical irradiation are included in the uncertainty of η. In fact, one can expect that
non-spherical irradiation is equivalent to having smaller values of η. For example, Vilhu et
al. [174] claim that, given the relatively fast redistribution of heat around the star, η = 0.1
is well justified with the assumption of spherical heating.

Let us recall that there is also some uncertainty in the radius of the neutron star (see
Section 2.3.2), which comes into play in the equation for the irradiation flux (see Equation
3.3). Therefore, one can fix a given value for R1, and again, claim that the uncertainty of
R1 gets transferred in the uncertainty of η. As discussed in Section 2.3.2, Guillot et al. [53]
seem to indicate that neutron stars have smaller radii that the value used in this thesis. This
would thus imply that slightly larger values of η are favored, but this would be a very small
change.

3.3 Evolution with Irradiation
Now that the theory behind X-ray irradiation and how it can be implemented in the MESA
code has been developed, one can recompute the evolution of LMXBs and IMXBs and
compare the tracks with the previous results.

It is important to note at this point that the effects of X-ray irradiation complicate
the computer simulations. Indeed, since energy is added in the outer shells of the donor
star, the star suddenly finds itself with large temperature and luminosity gradients inside
the envelope. These gradients significantly increase in magnitude within a few time steps.
When this happens, if the MESA code does not decrease its time step sufficiently, it will not
be able to converge to a solution, i.e. the code will crash. On the other hand, if the MESA
code reduces the time step too much (down to seconds sometimes) to compensate for the
large gradients, then the code will take an enormous amount of time to simulate only a few
years of evolution. The solution to this issue resides in finding the best mesh controls (in
order to have more shells near the region where energy is deposited) and the best time step
controls, i.e. finding limits on the time steps change depending on particular values of the
temperature and luminosity gradients. In the end, this allows one to successfully run the
MESA code, but there are still some situations where either the code does not converge or
it takes an “infinite” time to compute the entire evolution. And, in general, even when the
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code converges successfully within an appropriate amount of time, it is important to note
that the overall computing time is increased significantly.

3.3.1 Radius Increase

Before doing any evolutionary computations, it is important to verify that our X-ray irra-
diation model behaves as expected. To do this, one can try to reproduce Podsiadlowski’s
[120] results (recall Figure 3.1). The goal is to observe that for low irradiation fluxes, the
donor star’s radius remains the same, and then for increasing fluxes, the donor star bloats
up before reaching a maximum value (the “plateau”).

Here is how this computation is done. First, the donor star is removed from the binary
system since it must not interact with the neutron star (one simply has to set the initial
orbital period to be extremely large). Second, one artificially turns off nuclear reactions so
that, without any external influence, the star’s radius would remain constant through time.
Third, one artificially irradiates the star at a constant flux for a sufficiently large amount of
time so that the star reaches thermal equilibrium again.

Figure 3.7 shows the results of the computations described above. Note that the computa-
tions are performed for different donor star masses. First, one notes that for log

(
Firr

erg s−1cm2

)
.

11.0, the constant heating does not perturb the donor star’s radius significantly. However, for
11.0 . log

(
Firr

erg s−1cm2

)
. 11.8, the donor star seriously bloats up, and the less massive the star

is, the larger the effect. In fact, Figure 3.7 shows that for M = 1.5M�, the constant irradia-
tion flux barely modifies the star’s equilibrium properties. Then, for log

(
Firr

erg s−1cm2

)
& 11.8,

the effect of increasing the irradiation flux does not modify the star’s radius very noticeably.
The general behavior of the donor star under X-ray irradiation found here matches

the results of Podsiadlowski [120]. The major difference is that in Podsiadlowski’s re-
sults, the radius increase of the donor stars becomes important for smaller irradiation fluxes
(log (Firr/erg s−1cm2) ' 10.2). But one has to recall that Podsiadlowski’s method (chang-
ing the boundary conditions of the star) and the one described in this thesis (Monte-Carlo
simulation and deposition of energy inside the star) are rather different.

3.3.2 Evolutionary Tracks

This section shows the evolutionary tracks of X-ray binaries with the same initial conditions
than the ones shown in Section 2.4.2 but with the effects of X-ray irradiation. Note that for
the following, the efficiency factor is taken to be η = 0.1. Other values of η are explored in
Section 4.2.1.

First, one notes that Figure 3.8 is fairly similar to Figure 2.10 (no irradiation for that
case). However, there is a major difference if one looks at the mass-transfer rate. With
irradiation, the first peak seems to have two mass-transfer phases rather than only one
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Figure 3.7: Evolution of isolated donor stars of different masses under constant X-ray irradia-
tion and without nuclear burning. The graph shows the equilibrium radius (R) as a function
of the external irradiation flux (F ) for unevolved stars. Note that the bumpy feature of the
red curve right after F = 1011 erg s−1 cm2 is only due to the limitation of the program used
to fit a spline curve to the data points.
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Figure 3.8: Same description for the graphs as for Figure 2.10 with the same initial conditions.
The final values are M1,f

∼= 1.65M�, M2,f
∼= 0.44M� and Porb,f ∼= 311.2 hr.



CHAPTER 3. X-RAY IRRADIATION: THE MODEL 80

Figure 3.9: Same description for the graphs as for Figure 2.11 with the same initial conditions
2.11. The final values are M1,f

∼= 1.47M�, M2,f
∼= 0.50M� and Porb,f ∼= 433.5 hr.

as is found without irradiation. Then, there is no plateau in the mass-transfer rate with
irradiation. Also, the second peak is a lot different. With irradiation, there are many peaks
that reach close to 10−4M�/yr, which is well above the Eddington limit. This is an example
of “irradiation cycles”, which is discussed in more depth in the following section. Because of
that, the second mass-transfer phase does not favor the accretion of mass onto the neutron
star as much as it does without irradiation. Thus, although the end values for the orbital
period and the mass of the donor star are similar, the mass of the neutron star is quite
smaller with irradiation.

Comparing Figure 3.9 with Figure 2.11, there are almost no differences. In fact, the end
values are basically identical. Thus, for this particular set of initial conditions, irradiation
has almost no effect on the evolution.

As opposed to the last figure, Figure 3.10 shows a completely different behavior compared
to the evolution without irradiation (Figure 2.12). Indeed, with irradiation, the mass-transfer
rate shows one long mass-transfer phase followed by a short phase, which is then followed by
a large number of irradiation cycles. In the end, the values are all very different (the neutron
star is much less massive, the orbital period is smaller, and the donor star is less massive).

Figure 3.11 shows irradiation cycles that make the evolution seem very different than its
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Figure 3.10: Same description for the graphs as for Figure 2.12 with the same initial condi-
tions. The final values are M1,f

∼= 1.93M�, M2,f
∼= 0.18M� and Porb,f ∼= 35.8 hr.
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Figure 3.11: Same description for the graphs as for Figure 2.13 with the same initial condi-
tions. The final values are M1,f

∼= 1.63M�, M2,f
∼= 0.32M� and Porb,f ∼= 2728.0 hr.
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Figure 3.12: Same description for the graphs as for Figure 2.10. The initial conditions for
this evolution are M1,i = 1.4M�, M2,i = 2.15M� and Porb,i = 10.0 hr.

non-irradiation counterpart. A very similar system is analyzed in more detail in the following
section. Note that the final donor star mass and the final orbital period are very similar to
the non-irradiated case, but the final neutron star mass is much smaller once again.

Finally, Figure 3.12 shows the evolution of an X-ray binary system that evolves as a
CV-like system (see Section 2.4.1 for discussion of CV-like systems). The evolution of this
particular system has not been shown previously without irradiation. The goal here is
not to compare with non-irradiated simulations, but to show why this type of evolution is
very demanding computationally. Looking at the effective temperature, one sees that the
irradiation cycles lead to enormous changes. Every large change in Teff makes it difficult for
the code to converge. It has to reduce the time step to very small values, but this in turns
slows the code significantly, i.e. the computational time is increased. It is for this reason
that the computations of CV-like systems with irradiation are ignored in this work.

3.3.2.1 Irradiation Cycles

The goal of this section is to explain irradiation cycles. Let us start by looking at the
mass-transfer rate. Looking at Figure 3.13, when the mass transfer starts at ' 3.55 ×
109 years, the mass-transfer rate for the irradiated system (blue curve) and for the non-
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Figure 3.13: Comparison of the evolution of an X-ray binary system with and without
irradiation. The evolutionary tracks depict a 1.39M� donor star losing mass to an initially
1.4M� neutron star with an initial period of 151.4 hr.

irradiated system (green curve) show identical behavior. As the mass-transfer rate increases,
the donor star bloats up under X-ray irradiation and the mass-transfer rate increases even
more rapidly. Thus, the two curves separate from one another. For the irradiated case, the
mass-transfer rate peaks at ' 10−5M�/yr while for the non-irradiated case, the rate is still
at ' 10−9M�/yr.

Now, looking at the orbital period, one sees that for the irradiated case, while the mass-
transfer rate is very large, the orbital period increases suddenly (red curve). Recalling
Equation 2.40 for the Roche lobe radius, the increase in binary separation (which is the
same as an increase in orbital period) increases the Roche lobe radius. Thus, at one point,
the donor star does not overflow the Roche lobe anymore and the mass transfer has to stop.
This is why the mass-transfer rate for the irradiated case drops at ' 3.555× 109 years.

For the non-irradiated case, the mass-transfer rate does not peak at a high value, so
the orbital period increases only smoothly (pink curve), and thus, mass is transferred con-
tinuously throughout the evolution. For the irradiated case, the sudden increase in binary
separation stops the mass transfer and it is only nuclear evolution that can increase the
radius of the donor star to bring the stars back into contact. Then, at ' 3.57 × 109 years,
the mass transfer starts all over again, peaking shortly later with a very high value. This
process then repeats itself several times. These cycles in the mass-transfer rate are called
irradiation cycles.

Overall, although the orbital period increases step wise with irradiation and continuously
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without irradiation, the final orbital periods are quite close to one another at the end of the
evolution. However, the major difference comes from the mass that the neutron star can
accrete in both processes. Indeed, without irradiation, the mass-transfer rate stays (for
the majority of the evolution) below the Eddington limit. For the irradiated case, all the
mass-transfer peaks are a few orders of magnitude above the Eddington limit, which implies
that system looses a lot of mass. Therefore, the non-irradiated X-ray binary ends up with
a massive neutron star and the irradiated X-ray binary ends up with a much less massive
neutron star.



Chapter 4

X-ray Irradiation: The Results

4.1 New Evolutionary Grids with Irradiation
Now that a model for the effects of self-induced X-ray irradiation has been implemented in
the MESA code, one can compute an evolutionary grid. As described in Section 2.4.2, the
evolution of 4,200 LMXBs and IMXBs is computed, whereM1,i = 1.4M�,M2,i = 1−4M� in
increments of 0.05M�, and Porb,i = 10− 250 hrs in increments of 0.02 in the log scale. This
evolutionary grid is then computed for different values of the irradiation efficiency factor
introduced in the previous chapter. The values are taken to be η = 0.05, 0.10, 0.50, and
1.00. This will show the effects of irradiation if only a limited X-ray flux reaches the donor
star (e.g., 5%), and at the opposite end, if the donor star is fully irradiated (100%). One do
not expect full irradiation, but the calculations with η = 1 are still carried out, allowing us
to rule it out with more than heuristic arguments.

Let us note that for these computations with irradiation, the evolutionary paths of CV-
like systems and ultracompacts were not computed. Indeed, as discussed in Section 3.3.2,
CV-like systems tend to have many irradiation cycles with very large variations in surface
temperature making the computations for the donor star very difficult. Thus, if for a given
track the donor star evolved under 0.6M� and the orbital period evolved below 5 hours,
then the computation was simply stopped.

Figure 4.1 shows an example of evolutionary grid with irradiation with η = 0.5. As
explained in the previous paragraph, no CV-like or ultracompact tracks are found in the
grid. Comparing this Figure with panel a) of Figure 2.8, a few differences can be observed.
First, the colors are not the same. As seen in Section 3.3.2 and 3.3.2.1, when irradiation is
included, the mass-transfer phases are very intense but do not last for a long amount of time.
However, it is during those phases that the mass of the star and the orbital period change.
Thus, where one saw green in Figure 2.8, one now sees mainly blue (which indicates a lower
relative probability) in this figure. However, if one looks carefully at Figure 4.1, one will

86
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Figure 4.1: Evolutionary grid with the effects of self-induced irradiation. The irradiation
efficiency factor is η = 0.5.
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see that there are many small yellow and red points, which indicate small regions of higher
relative probability. In fact, these points are due to the much longer quiescent phases in the
irradiation cycles, i.e. when there is no mass transfer. Moreover, it is possible to observe
irradiation cycles in this period-mass plot if one looks at the systems that evolve towards
CV-like evolution (smaller orbital periods). There is one last feature to note that is not
found in the non-irradiated grid. If one looks at Figure 4.1 for M2 ' 0.2M� and Porb ' 400
hours, one will see that there seems to be a number of tracks that evolved further than the
previously obtained period-mass relation in this region. This will be discussed in more depth
in the next section.

4.2 New End Points with Irradiation

4.2.1 The Effects of Changing the Efficiency Factor η

Now, let us look at the end points of the evolutionary grids that were computed with the
effects of irradiation. Figure 4.2 shows the final orbital period as a function of the final
donor star mass. Let us recall that without irradiation (η = 0), good results had already
been obtained, i.e. results that matched most of the observed binary millisecond pulsars.
Therefore, including the effects of irradiation cannot cause a large divergence from these
results. If the results do diverge, then it might be an indication that the irradiation model
is not physical.

In general, results for η = 0 and η > 0 seem to agree quite well with one another.
There are a few regions though where the results differ. First, in the region delimited by
M2,f ' 0.3 − 0.45M� and Porb,f ' 200 − 600 hours, all colored dots (irradiation) match
one another, but they all slightly diverge towards smaller donor star masses with respect to
the black dots (no irradiation) of the same final orbital periods. Second, along the period-
mass relation (blue-green line in Figure 4.2) for Porb,f . 300 hours, it looks as if irradiation
produces systems with slightly larger final orbital periods with respect to the black dots (no
irradiation) of the same donor star masses. Finally, there is a region that shows divergence
among the different efficiency factors. This region, observed in the previous section around
Porb,f ' 300−1000 hours andM2,f ' 0.19−0.23M� shows systems that evolved significantly
further than the period-mass relation. However, this occurs only for η = 0.5 and η = 1.0,
which might be an indication that irradiation with large efficiency factors (& 0.5) is not
physical. This would imply that at least half the X-rays would be intercepted before reaching
the photosphere of the donor star. However, recall that the efficiency factor accounts for
other uncertainties (such as spherical heating and the radius of the neutron star), so one has
to be careful before making such a conclusion.

Now, let us look at Figure 4.3 where one see the final neutron star mass as a function of
the final donor star mass. This time, it is obvious that irradiation has a strong effect on the



CHAPTER 4. X-RAY IRRADIATION: THE RESULTS 89

Figure 4.2: End points of the evolutionary grids with the effects of irradiation comparing
η = 0.0 (no irradiation), 0.05, 0.10, 0.50, and 1.0 (full irradiation). This is a graph of the
final orbital period as a function of the final donor star mass. The blue-green line is the
period-mass relation of Lin et al. [90].
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Figure 4.3: End points of the evolutionary grids with the effects of irradiation comparing
η = 0.0 (no irradiation), 0.05, 0.10, 0.50, and 1.0 (full irradiation). This is a graph of the
final neutron star mass as a function of the final donor star mass.
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final neutron star mass. If without irradiation the results showed neutron stars as massive as
2.6M�, then with the effects of irradiation, only a few neutron stars accrete sufficient mass to
grow larger than 2.0M�. Looking at the different efficiency factors, one sees different results
for small efficiencies (5% and 10%) and large efficiencies (50% and 100%). Indeed, if all cases
are similar for large final donor star masses (& 0.4M�), it is different for smaller final donor
stars. In fact, it is easily seen that for the range M2,f ' 0.3− 0.4M�, values of η = 0.50 and
η = 1.0 produced similar results, but that η = 0.1 produces heavier final neutron stars, and
that, η = 0.05 produces even slightly heavier final neutron star masses. However, as stated
in the previous paragraph, there are reasons to believe that large efficiency factors are not
physical.

The distinction between irradiated and non-irradiated results is more significant for
M2,f . 0.3M� where much smaller neutron stars were produced with irradiation. This
has the advantage of reproducing the observed properties of many more binary millisecond
pulsars that were not explained without irradiation (unless βmax was arbitrarily set to a very
small value as discussed in Section 2.4.4).

Interestingly, these results are observed even with an efficiency factor as low as 5%,
showing that the donor star does not need to be irradiated by a large fraction of the total
irradiation flux in order to bloat up and produce irradiation cycles. Furthermore, one can
test smaller efficiency factors. Computing another evolutionary grid would require some
significant time, but one can simply check one particular track. For example, if one starts
with M1,i = 1.4M�, M2,i = 1.45M�, and Porb,i ∼= 25.12 hours, one will obtain without
irradiation M1,f

∼= 2.28M�, M2,f
∼= 0.26M�, and Porb,f ∼= 477 hours, whereas η = 0.05

produces M1,f
∼= 1.55M�, M2,f

∼= 0.25M�, and Porb,f ∼= 367 hours. Thus, η = 0.05 has
a strong effect on M1,f , an important effect on Porb,f , but not so much on M2,f . Now,
computing the evolution of the same system but with η = 0.01 produces M1,f

∼= 1.86M�,
M2,f

∼= 0.26M�, and Porb,f ∼= 462 hours. Thus, even an efficiency factor of 1% leads to a
significantly smaller final neutron star mass. Again, M2,f is unchanged, but Porb,f is closer
to the non-irradiated case.

It is interesting to note that Benvenuto et al. [15] considered irradiation with efficiency
factors as low as η = 0.05 and η = 0.01 in order to reproduce the observed properties of a
very peculiar binary millisecond pulsar, PSR J1719-1438, that contains a Jupiter-like mass
companion in 2.2 hour orbit. The study of such a system would require us to look at CV-like
evolution though.

Therefore, irradiation clearly seems to reproduce the smaller neutron star masses that one
seeks for, but there are still a few important systems that remain unexplained. Indeed, there
are not many theoretical simulations close to PSR J1909-3744 withMNS = 1.438±0.024M�
and MWD = 0.2038 ± 0.0022M�. Also, PSR J1614-2230 with MNS = 1.97 ± 0.04M� and
MWD = 0.500 ± 0.006 is far from being explained. The solution to this issue may reside in
changing the natal mass of the neutron star as will be discussed in the following section.

So, irradiation clearly reduces the amount of mass that neutron stars can accrete, but
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there might be an undesirable consequence of this. Ritter [137] claims that the amount of
mass accreted by the neutron star would be insufficient to spin it up to a spin period of a
few milliseconds as should be the case for binary millisecond pulsars. Fortunately, Tauris et
al. [159] find that the accreted mass (∆M), the mass of the neutron star (M1), and the spin
period of the pulsar (Pms) are related by

∆M = 0.22M�
(M1/M�)1/3

P
4/3
ms

. (4.1)

Thus, if a 1.4M� neutron star accretes a little as 0.1M� of matter, then it can still spin up
to a period of P ' 2 ms; most of the binary millisecond pulsars have periods above 2 ms (e.g.,
[159]). So, the small amounts of mass accreted should be sufficient to spin up neutron stars
to produce millisecond pulsars. Computing the exact spin period and spin period derivative
with irradiation, and comparing this with observations (as is done by Tauris et al. [159]
without irradiation), would be interesting avenue of future investigation.

4.2.2 Changing the Natal Mass of the Neutron Star

In order to reproduce the properties of PSR J1614-2230 and PSR J1909-3744, one may have
to invoke either smaller or larger natal masses for the neutron star. As discussed in Section
2.4, there is some uncertainty in the value that M1,i should take. For this reason, it may be
possible that M1,i ' 1.2M�, which would be promising for J1614-2230, or it may be that
M1,i ' 1.6M�, which would be promising for J1909-3744. So, let us look at the end points
of binary evolutionary grids when the natal masses of the neutron star are either 1.2M� or
1.6M�.

Figure 4.4 shows the end points for M1,i = 1.2M�. Comparing panel a) with Figure 4.2
shows that lowering the natal mass of the neutron star produces smaller final orbital periods,
but the results still match the orbital period of most of the binary millisecond pulsars and
the period-mass relation is still satisfied. Looking at panel b), one sees that the properties
of most of the low-mass neutron stars are now very well reproduced with irradiation. Most
importantly, there are many numerical results that would fit the properties of PSR J1909-
3744.

Figure 4.5 shows the (perhaps) less likely situation where the neutron star would be
born relatively massive (1.6M�). One can claim that this is a less likely situation from
neutron star birth mass studies. Furthermore, we see here that it is indeed a less likely
situation looking at panel b) of Figure 4.5, since neutron stars would accrete mass up to
almost 3M� in some cases (without irradiation). However, this is the only way of getting
closer toMNS = 1.97±0.04M� for PSR J1614-2230. Indeed, there are a few tracks (without
irradiation) that ended their evolution with properties similar to this system. One can see
that there are two numerical results with irradiation (green dots) that show M1,f ' 1.87M�
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a)

b)

Figure 4.4: End points of evolutionary grids where M1,i = 1.2M�. The black dots are
computed without irradiation (η = 0) and the green dots show the effects of irradiation for
η = 0.1.
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a)

b)

Figure 4.5: End points of evolutionary grids where M1,i = 1.6M�. The black dots are
computed without irradiation (η = 0) and the green dots show the effects of irradiation for
η = 0.1.



CHAPTER 4. X-RAY IRRADIATION: THE RESULTS 95

(which is not too far below MNS for PSR J1614-2230) and that would fit the final donor
star mass. So, it could be that irradiation still occurs in the generation of such a system.
However, an even slightly larger natal mass for the neutron star would be required in that
case. Unfortunately, all those numerical results seem to have a larger orbital period than
PSR J1614-2230 by about 100 hours. Thus, although one can get closer to reproducing this
system with M1,i = 1.6M�, it remains a challenge to find the initial conditions that could
reproduce it.

Note that Lin et al. [90] found that to reproduce the observed properties of PSR J1614-
2230, one would need M1,i = 1.6 ± 0.1M�. However, recall that this did not include the
effects of the binding energy of the neutron star. Also, Tauris et al. [158] found for the same
system that the natal mass of the neutron star should be 1.70 ± 0.15M�, i.e. even more
massive. Thus, it is possible that PSR J1614-2230 is a very special case which does require
a very massive initial neutron star.



Chapter 5

Conclusions

The goal of this thesis was to study the evolution of low- and intermediate-mass X-ray
binary systems. More particularly, the goal was to include the physics of self-induced X-ray
irradiation in order to determine the overall effects of irradiation on the evolution of X-ray
binaries. Thus a model consisting of Monte-Carlo simulations to determine the penetration
depth of X-rays in the donor stars was created to include X-ray irradiation into the MESA
stellar evolution code. Furthermore, the effects of the binding energy of neutron stars was
included in the evolution. Then, the evolution of 4,200 binary models was computed from a
set of initial conditions in the Porb −M2 parameter space. These calculations were repeated
with different maximum mass-transfer fractions (βmax), different irradiation efficiency factors
(η), and different natal masses for the neutron stars (M1,i).

We showed that standard X-ray binary evolution (βmax = 1, η = 0, M1,i = 1.4M�) could
reasonably reproduce some of the properties of many binary millisecond pulsars, but often,
the neutron stars accreted too much mass compared to the observations. One of the possible
solutions to this discrepancy is to reduce βmax arbitrarily, but there are few good physical
reasons to do this. Another solution is to include the effects of irradiation.

We found that self-induced X-ray irradiation can produce irradiation cycles where the
X-ray binaries alternated between transient high mass-transfer phases and quiescent phases.
Thus, because the mass-transfer rates were super-Eddington most of the time, the neutron
stars accreted barely any mass, hence better matching the smaller observed neutron star
mass values. We also found that this effect could be significant with an efficiency factor as
low as 5%.

The results presented in this thesis allows one to answer Ritter’s [137] question: Is ir-
radiation important for the secular evolution of low-mass X-ray binaries? It seems that
irradiation does modify the evolutionary paths of LMXBs and IMXBs that evolve to be-
come binary millisecond pulsars. In fact, irradiation significantly lowers the final mass of
the neutron stars, which is a desirable effect given that one had to invoke non-conservative
mass transfer in previous studies. Also, irradiation modifies the final orbital period of X-ray
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binaries, but only slightly for η = 0.1 and η = 0.05. The changes are more important for
η = 0.5 and η = 1, which suggest that irradiation with such high efficiencies does not occur.

Note that different natal masses for the neutron stars were also tested in this thesis in
order to reproduce the observed properties of particular binary millisecond pulsars. This
showed that 1.2M� could be a suitable initial mass for the neutron star. Also, it showed
that M1,i ≥ 1.6M� would be needed in special cases since the neutron star mass of some
observed systems cannot not be explained with M1,i < 1.6M�.

5.1 Future Work
In the future, it would be interesting to focus on finding the initial conditions that can lead
to particular observed systems such as PSR J1909-3744 and PSR J1614-2230. This would
require one to zero in particular regions of the Porb −M2 parameter space and test various
combinations of M1,i, η, and βmax.

Also, as mentioned in Section 4.2.1, it would be interesting to investigate the spin-up
of neutron stars as they become millisecond pulsars. Since there are good observations of
neutron star spin period and of their spin period derivative, investigating this avenue could
help improving the theoretical model of X-ray binary systems.

In order to improve the model for irradiation presented in this thesis, one would need to
determine what fraction of the X-rays are intercepted by the accretion disk of the neutron
star through a proper analysis of accretion disks. Also, three-dimensional computations in
the donor star’s interior would improve the energy deposition model.

Finally, analyzing the effects of self-induced X-ray irradiation in CV-like X-ray binary
systems would be interesting to investigate in the future. However, this might be challenging
given the numerical difficulties that we mentioned in Section 3.3.2.



Appendix A

Geometry of X-ray Binary Systems

A.1 Proof of the Formula for the Geometrical Factor h(θ)

in the equation for the Irradiation Flux
Looking at Figure A.1, one can see that

cos θmax =
R2

a
, (A.1)

where θmax is the limb angle, that is for θ ≥ θmax, the star would not intercept any X-ray
photon. Let us define

f2 ≡
R2

a
. (A.2)

Thus,
θmax = arctan f2 . (A.3)

According to Büning & Ritter [22], the geometrical factor that is of interest here, h(θ), is
equal to cos β, where the angle β is define in Figure A.1. Figure A.1 shows that h(θ) = cos β,
since one only wants the component of the flux Firr (F (θ) in Figure A.1) that is perpendicular
to the surface of the star. Simple geometry tells us that γ = π−β and δ = β− θ, so the law
of sines sin γ

a
= sin δ

R2
becomes

R2 sin (π − β) = a sin (β − θ) = a (sin β cos θ − cos β sin θ) , (A.4)

so
f2 ≡

R2

a
= cos θ − cot β sin θ , (A.5)

which can be solved for β. Thus,

β = arctan

(
sin θ

cos θ − f2

)
, (A.6)
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Figure A.1: Geometry of an X-ray binary system (figure taken from King et al. [76] with
additional angles following Büning & Ritter [22]).

and consequently,

cos β =

[(
sin θ

cos θ − f2

)2

+ 1

]− 1
2

, (A.7)

which can be simplified to yield

cos β =

[
sin2 β + cos2 β − 2f2 cos β + f 2

2

(cos β − f2)2

]− 1
2

;

∴ cos β =
cos θ − f2

(1− 2f2 cos θ + f 2
2 )

1
2

. (A.8)

A.2 Proof of the Relation between the Distance Traveled
in Shell k by an X-ray Photon, ∆dk, and the Shell
Thickness, ∆rk.

According to Figure A.2, simple geometry tells us that{
αk+1 + βk+1 = π

αk+1 + γk + ωk = π
, (A.9)
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Figure A.2: Schematic diagram showing the angles used in the proof in this appendix.

so αk+1 = π − βk+1 and ωk = βk+1 − γk. Then, the law of sines,

sinαk+1

rk
=

sin γk
∆dk

=
sinωk
rk+1

, (A.10)

becomes
sin (π − βk+1)

rk
=

sin γk
∆dk

=
sin (βk+1 − γk)

rk+1

, (A.11)

or
∆dk sin βk+1 = rk sin γk (A.12)

rk+1 sin βk+1 = rk sin (βk+1 − γk) (A.13)

rk+1 sin γk = ∆dk sin (βk+1 − γk) . (A.14)

Then, starting from Equation A.13, one can solve for γk to find

γk = βk+1 − arcsin

(
rk+1

rk
sin βk+1

)
(A.15)

∴ sin γk = sin

[
βk+1 − arcsin

(
rk+1

rk
sin βk+1

)]
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∴ sin γk = sin βk+1 cos

[
arcsin

(
rk+1

rk
sin βk+1

)]
−
(
rk+1

rk
sin βk+1

)
cos βk+1

∴ sin γk =

(√
1−

r2k+1

r2k
sin2 βk+1 −

rk+1

rk
cos βk+1

)
sin βk+1

∴ sin γk =
sin βk+1

rk

(√
r2k − r2k+1 sin2 βk+1 − rk+1 cos βk+1

)
. (A.16)

Using Equation A.12, one gets

∆dk =
√
r2k − r2k+1 sin2 βk+1 − rk+1 cos βk+1 . (A.17)

Now, looking at Figure A.2 again, one can apply the law of sines to another triangle, i.e.

sinαk+1

a
=

sin δ

rk+1

. (A.18)

So recalling that αk+1 = π − βk+1, one obtains

sin βk+1 =
a

rk+1

sin δ . (A.19)

Thus, Equation A.17 becomes

∆dk(δ) =

√
r2k − r2k+1

a2

r2k+1

sin2 δ − rk+1

√
1− a2

r2k+1

sin2 δ ; (A.20)

∴ ∆dk(δ) =
√
r2k − a2 sin2 δ −

√
r2k+1 − a2 sin2 δ. (A.21)
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