Isotropisation in the Approach to a Singularity

Jerome Quintin

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany

Max-Planck-Institut für Gravitationsphysik ALBERT-EINSTEIN-INSTITUT

Copernicus Webinar Series October 25th, 2021

Mainly based on Ganguly & JQ [arXiv:2109.11701]

Motivation

• The early universe can be explained by a period of inflation after the big bang

−→ produces a **flat**, **isotropic** universe with **scale-invariant** curvature perturbations

- However, other alternatives exist that could also explain the early universe
	- \rightarrow often involves physics 'before the big bang'
- E.g., bouncing cosmology, where the 'primordial physics' occurs during a **contracting phase** (prior to a bounce and the onset of standard big bang cosmology with radiation domination)

Bouncing cosmology

Flatness problem: $\Omega = 1$, where $(8\pi G_N = 1$ throughout this talk)

$$
\Omega \equiv \frac{\rho_{\rm matter}}{3H^2} = 1 + \frac{k}{(aH)^2},
$$

is an attractor for $\dot{a} < 0$ and $1 + 3w > 0$ ($w \equiv p/\rho$):

$$
Friedmann eqs. \implies \frac{d|\Omega - 1|}{dt} = (1 + 3w) \left(\frac{\dot{a}}{a}\right) \Omega(\Omega - 1)
$$

- \checkmark Horizon problem: comoving horizon $|aH|^{-1}$ is very large initially and shrinks
- Structure formation problem: certain fields can generate scale-invariant scalar perturbations, e.g.,
	- adiabatic **'dust field'** Wands [gr-qc/9809062], Finelli & Brandenberger [hep-th/0112249]
	- entropic **negative exponential scalar field** (ekpyrotic) Lehners *et*

al. [hep-th/0702153], Buchbinder *et al.* [hep-th/0702154]

Bouncing cosmology

✗ Anisotropy problem: anisotropies typically tend to grow and dominate over everything else as $a \searrow 0$ (in the approach to the would-be big crunch singularity)

For different components with $\rho^{(w)} \propto a^{-3(1+w)}$ $(w < 1)$,

$$
3H^2 = \Lambda - \frac{k}{a^2} + \frac{\rho_0^{\text{(mat.)}}}{a^3} + \frac{\rho_0^{\text{(rad.)}}}{a^4} + \frac{\rho_0^{\text{(ani.)}}}{a^6} \, .
$$

(This does not appear to be a problem for matter with $w > 1$.)

- \Rightarrow Any bouncing alternative to inflation that wants to be viable and legitimately considered must solve these problems:
	- \triangleright anisotropies must not disrupt the contracting background that generates the right perturbations;
	- \blacktriangleright anisotropies must not disrupt the bounce.

Anisotropy evolution in GR with a perfect fluid

• Consider a Bianchi type-I metric:

$$
g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + a(t)^2 \sum_{i=1}^3 e^{2\beta(i)(t)}(dx^i)^2
$$
, $\sum_{i=1}^3 \beta(i)(t) = 0$

 $a_{(i)} = ae^{\beta_{(i)}}$, $\ln a = \langle \ln a_{(i)} \rangle$, $H \equiv \dot{a}/a = \langle H_{(i)} \rangle$, $H_{(i)} = H + \dot{\beta}_{(i)}$

• Hypersurface with timelike unit normal u^{μ} has

$$
K_{\mu\nu}_{\text{extr. curv.}} = (\underbrace{g_{\mu\nu} + u_{\mu}u_{\nu}}_{h_{\mu\nu}})H + \underbrace{\sigma_{\mu\nu}}_{\text{shear}}, \quad \sigma_i^j = \dot{\beta}_{(i)}\delta_i^j, \quad \sigma^2 \equiv \frac{1}{2}\sigma_{ij}\sigma^{ij} = \frac{1}{2}\sum_{i=1}^3 \dot{\beta}_{(i)}^2
$$

Einstein field equations \implies FLRW + shear anisotropy component:

$$
3H^2 = \rho + \sigma^2, \quad 2\dot{H} = -(\rho + p) - 2\sigma^2
$$

$$
\dot{\sigma}_i{}^j + 3H\sigma_i{}^j = 0 \implies \ddot{\beta}_{(i)} + 3H\dot{\beta}_{(i)} = 0 \implies \dot{\beta}_{(i)} \propto a^{-3}
$$

$$
\implies p_\sigma = \rho_\sigma = \sigma^2 = \frac{1}{2} \sum_{i=1}^3 \dot{\beta}_{(i)}^2 \propto a^{-6}
$$

Anisotropy evolution in GR with a perfect fluid

- \triangleright Shear anisotropy component behaves as a set of massless scalar fields $\mathcal{L}=-\frac{1}{2}$ $\frac{1}{2} \partial_\mu \beta_I \partial^\mu \beta^I$, i.e., with stiff EoS
- \triangleright When the shear anisotropy component dominates,

$$
H^2 \sim \sigma^2 \propto a^{-6} \implies a(t) \sim |t|^{1/3}
$$

- \longrightarrow Kasner singularity as $t \nearrow 0$
- −→ 'Belinski-Khalatnikov-Lifshitz (BKL) instability'
- \blacktriangleright Tuning the initial conditions for anisotropies to remain subdominant would be quite huge (see additional slides)

Ekpyrosis

• How about scalar fields with negative exponential potential?

$$
\mathcal{L} = \sum_{I} \left(-\frac{1}{2} \partial_{\mu} \phi_{I} \partial^{\mu} \phi_{I} + V_{I} e^{-c_{I} \phi_{I}} \right), \quad V_{I} > 0, \ c_{I}^{2} > 6
$$

- Those can arise as moduli of higher-dim. brane constructions in string theory (e.g., distance between 'end-of-the-world' branes)
- Background scaling solution:

$$
a(t) \propto (-t)^{1/\epsilon}
$$
, $\epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{1}{2} \left(\sum_I c_I^{-2} \right)^{-1} > 3$, $w = \frac{2\epsilon}{3} - 1 > 1$

• Direction \perp to background trajectory in field space generates scale-invariant scalar perturbations

Isotropisation in ekpyrosis

• Ekpyrotic fields dilute anisotropies

$$
3H^2 = \ldots + \frac{\rho_0^{(\text{ani.})}}{a^6} + \frac{\rho_0^{(\text{ek.})}}{a^{2\epsilon}} \,, \qquad \epsilon > 3
$$

 \rightarrow FRW is an attractor "Cosmic no hair for collapsing universes", Lidsey [hep-th/0511174]

• Highly efficient and even robust to large anisotropic, curved, and inhomogeneous ICs Garfinkle *et al.* [0808.0542], figure below addapted from Ijjas *et al.* [2006.04999]

Isotropisation with massive gravity

• In GR:

$$
S \supset \int d^3x dt \, a^3 \left(\frac{1}{2}\dot{\beta}_{(i)}^2\right) \quad \stackrel{\delta_{\beta_{(i)}}S=0}{\Longrightarrow} \quad \ddot{\beta}_{(i)} + 3H\dot{\beta}_{(i)} = 0
$$

But if the graviton has a mass m_a :

$$
S\supset \int\mathrm{d}^3x\mathrm{d}t\,a^3\left(\frac{1}{2}\dot{\beta}^2_{(i)}-\frac{1}{2}m^2_g\beta^2_{(i)}\right)\stackrel{\delta_{\beta_{(i)}}S=0}{\Longrightarrow}\ddot{\beta}_{(i)}+3H\dot{\beta}_{(i)}+m^2_g\beta_{(i)}=0
$$

• If $m_g^2 \gg H^2$, then anisotropies behave like an oscillating massive field with matter EoS in average: the EOMs are solved for

$$
\beta_{(i)}(t) \propto \frac{\sin(m_g t)}{m_g t}, \quad H(t) = \frac{2}{3t} \implies \rho_\sigma = \frac{1}{2} \sum_{i=1}^3 \left(\dot{\beta}_{(i)}^2 + m_g^2 \beta_{(i)}^2 \right) \propto a^{-3}
$$

- Anisotropies may be subdominant even during matter domination!
- ⇒ Solves many issues of "matter bounce cosmology" at once

Lin, Brandenberger & JQ [1711.10472]

Isotropisation with massive gravity

• 0-mode tensor perturbations \equiv anisotropies:

$$
\delta g_{ij} = a^2 \gamma_{ij} \implies \sigma_i^j = \frac{1}{2} \dot{\gamma}_i^j
$$

\n
$$
\implies S \supset \int \mathrm{d}^3 x \mathrm{d}t \, a^3 \left((\dot{\gamma}_i^j)^2 - (\vec{\nabla} \gamma_i^j)^2 - m_g^2 (\gamma_i^j)^2 \right)
$$

\n
$$
\vec{\nabla} \underline{\gamma_i^j} \to 0 \qquad \ddot{\gamma}_i^j + 3H \dot{\gamma}_i^j + m_g^2 \gamma_i^j = 0 \qquad \longrightarrow \gamma_i^j \text{ suppressed}
$$

- \Rightarrow Solves the large tensor-to-scalar ratio problem of matter bounce cosmology JQ *et al.* [1508.04141], Li, JQ *et al.* [1612.02036]
	- $m_q \lesssim \mathcal{O}(10^{-23} \text{ eV})$ today $\implies m_q$ would have had to be time dependent to have $m_a > |H_{\text{bounce}}|$
	- Adding a mass to a spin-2 field typically excites 3 new d.o.f.
	- Only the 2 standard polarisation modes if Lorentz invariance is partially broken Dubovsky *et al.* [hep-th/0411158], Lin & Labun [1501.07160], Lin & Sasaki [1504.01373], Domènech *et al.* [1701.05554], Lin & Mukohyama [1708.03757], Kuroyanagi *et al.* [1710.06789]

Isotropisation with a non-perfect fluid

Details in Ganguly & JQ [arXiv:2109.11701] from here on

• Ignoring heat transfer,

$$
T_{\mu\nu} = \rho u_{\mu} u_{\nu} + p h_{\mu\nu} + \pi_{\mu\nu}
$$

−→ EOMs are modified:

$$
\dot{\rho} + 3H(\rho + p) = -\pi^{ij}\sigma_{ij} , \qquad \dot{\sigma}_i{}^j + 3H\sigma_i{}^j = \pi_i{}^j
$$

• A fluid with shear viscosity has an anisotropic stress according to

$$
\pi_{ij} = -2\eta \sigma_{ij}
$$

AdS/CFT points to a universal lower bound on shear viscosity e.g., Son & Starinets [0704.0240]

$$
\frac{\eta}{s} \geq \frac{1}{4\pi}
$$

 \blacktriangleright From kinetic theory,

$$
\eta \sim c_{\rm s} \rho \ell_{\rm mfp}
$$

Toy model: finite-temperature interacting field theory

• Canonical scalar field, minimally coupled to gravity, with potential

$$
V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4
$$

Extreme regimes:

\n- $$
T \ll m
$$
, matter-like, $\rho \sim a^{-3}$
\n- $T \gg m/\lambda$, radiation-like, $\rho \sim a^{-4} \propto T^4$
\n

• At high-T, the $\lambda \phi^4$ self interaction implies a cross-section

$$
\sigma \sim \frac{\lambda^2}{T^2} \implies \ell_{\rm mfp} \sim \frac{1}{n\sigma} \sim \frac{1}{\lambda^2 T} \implies \eta \sim \rho \ell_{\rm mfp} \sim \frac{T^3}{\lambda^2} \propto a^{-3}
$$

\n
$$
\blacktriangleright \text{ Note that } \eta/s \sim 1/\lambda^2 \gtrsim 1 \text{ for } \lambda \lesssim 1
$$

• Shear evolution
$$
(\eta = \kappa/a^3, \kappa > 0)
$$
:

$$
\dot{\sigma_i}^j + 3H\sigma_i^j = \pi_i^j = -2\eta \sigma_i^j \implies \dot{\sigma_i}^j + 3H\sigma_i^j = -2\frac{\kappa}{a^3}\sigma_i^j
$$

• Assuming radiation domination initially (FLRW), $a(t) = \sqrt{t/t_0}$ $(t, t_0 < 0)$ and the solution reads

$$
\sigma^2 \propto \frac{1}{a^6} \exp\left(-\frac{8\kappa|t_0|}{a}\right) \xrightarrow{a \searrow 0} 0
$$

⊗ Caveat: one cannot trust this all the way to $a \setminus b$ since viscosity only makes sense on length scales smaller than the size of the system, here when $\ell_{\rm mfp} < |H|^{-1}$, but $\ell_{\rm mfp} \sim T^{-1} \sim a$ and $H^2 \sim \rho \sim a^{-4}$

 \otimes In the similar spirit, it does not make sense to take the $\lambda \searrow 0$ limit

- Consider a situation where shear is already dominating the universe
- \triangleright Can the viscosity from the subdominant radiation-like interacting scalar field isotropise the universe while in the regime $\ell_{\rm mfp} < |H|^{-1}$?
- \blacktriangleright Let's numerically solve

$$
\dot{\rho} + 4H\rho = \frac{4T_0^3}{\lambda^2} \left(\frac{a_0}{a}\right)^3 \sigma^2, \qquad \dot{\sigma}_i^j + 3H\sigma_i^j = -\frac{2T_0^3}{\lambda^2} \left(\frac{a_0}{a}\right)^3 \sigma_i^j
$$

$$
\lambda = 10^{-3}, \quad H_0 = -10^{-50}, \quad \frac{\sigma_0^2}{\rho_0} = 10^{15}
$$

- Is this robust to the inclusion of curvature anisotropies?
- \blacktriangleright In a Bianchi type-IX spacetime,

$$
h^i{}_j = a^2 \operatorname{diag} \left(e^{2\beta_+ + 2\sqrt{3}\beta_-}, e^{2\beta_+ - 2\sqrt{3}\beta_-}, e^{-4\beta_+} \right)
$$

$$
U(\beta_+, \beta_-) = \frac{1}{4}e^{-8\beta_+} - e^{-2\beta_+}\cosh\left(2\sqrt{3}\beta_-\right) + e^{4\beta_+}\sinh^2\left(2\sqrt{3}\beta_-\right)
$$

$$
3H^2 = \rho + \sigma^2 + \frac{1}{a^2}U(\beta_+, \beta_-), \quad -2\dot{H} = \rho + p + 2\sigma^2 + \frac{2}{3a^2}U(\beta_+, \beta_-)
$$

$$
\dot{\rho} + 3H(\rho + p) = 4\eta\sigma^2, \quad \ddot{\beta}_{\pm} + 3H\dot{\beta}_{\pm} + \frac{1}{6a^2}\partial_{\beta_{\pm}}U = -2\eta\dot{\beta}_{\pm}, \quad \sigma^2 = 3(\dot{\beta}_{\mp}^2 + \dot{\beta}_{\mp}^2)
$$

What about other cosmic fluids exhibiting viscosity

- Consider a gas of nearly pressureless dust-like matter: this is typically unstable to gravitational collapse
- \triangleright Fluid with small sound speed \implies gravitational instability =⇒ black hole formation JQ & Brandenberger [1609.02556], Chen *et al.* [1609.02571]
- \blacktriangleright Black holes attract each other gravitationally (they 'interact') \implies a 'fluid of black holes' is viscous
- ► Small black holes $(R \ll |H|^{-1})$, dilute gas:

$$
\sigma \sim \left(\frac{R}{c_s^2}\right)^2, \qquad \ell_{\rm mfp} \sim \frac{1}{n\sigma} \sim \frac{c_s^4}{\rho R}, \qquad \eta \sim c_s \rho \ell_{\rm mfp} \sim \frac{c_s^5}{R} \approx \text{const.}
$$

$$
\dot{\sigma}_i{}^j + 3H\sigma_i{}^j = -2\eta \sigma_i{}^j \implies \sigma^2 \sim \frac{e^{4\eta|t|}}{a^6}, \ |t| \searrow 0
$$

Dilute dust-like black hole gas

If the background is matter dominated at first (FLRW),

$$
\frac{\sigma^2}{\rho} = \left(\frac{a_0}{a}\right)^3 \exp\left[-\frac{4\eta}{3|H_0|}\left(1 - \left(\frac{a}{a_0}\right)^{3/2}\right)\right]
$$

Dimethm One has isotropisation only if σ^2/ρ is decreasing, which can happen if

Dilute dust-like black hole gas

 \otimes The problem here is that $\eta > \eta_{\min}$ only if

 $c_{\rm s}^5 > R|H_0|$,

but recall that viscosity only makes sense if $\ell_{\rm mfp} < |H|^{-1}$, which amounts to

 $c_{\rm s}^4 \lesssim R|H|$.

✗ Therefore, a dilute gas of black holes cannot realistically be viscous enough to isotropise a dust-like contracting universe

Let's push the black hole gas picture to the limit

- Imagine large black holes $(R \sim |H|^{-1})$ that dominate the universe near a big crunch
- Conjectured to be the state of matter at high density in the early universe, e.g., in string theory Banks & Fischler [many papers], Veneziano [e.g., hep-th/0312182], Masoumi & Mathur [1406.5798], Masoumi [1505.06787], JQ, Brandenberger, Gasperini & Veneziano [1809.01658], Mathur [2009.09832]
- Consider a volume with $N \sim V/R^3$ black holes:

$$
E \sim NM \sim \frac{V}{R^2}, \quad S \sim NR^2 \sim \frac{V}{R} \implies S \sim \sqrt{EV}
$$

$$
\implies T = \left(\frac{\partial S}{\partial E}\right)_V^{-1} \sim \sqrt{\frac{E}{V}} = \sqrt{\rho}, \quad p = T\left(\frac{\partial S}{\partial V}\right)_E = \frac{E}{V} = \rho
$$

• Stiff $p = \rho$ fluid with $s \equiv S/V \sim \sqrt{\rho}$

• No shear by construction since we recover the Friedmann equation

$$
\rho = \frac{E}{V} \sim \frac{1}{R^2} \sim H^2
$$

Dense black hole gas viscosity

• As before

$$
\sigma \sim R^2
$$
, $\ell_{\rm mfp} \sim \frac{1}{n\sigma} \sim R$, $\eta \sim \frac{1}{R} \sim |H| \sim \sqrt{\rho}$, $\frac{\eta}{s} = \text{const.}$

So for $\eta = \kappa |H|$ with κ of order 1, we have

$$
\dot{\sigma_i}^j + 3H\sigma_i^j = 2\kappa H \sigma_i^j \implies \sigma^2 \propto \frac{1}{a^{6-4\kappa}}
$$

forbids anisotropies from winning over compared to the 'stiff background' with $\rho \propto a^{-6}$:

$$
\frac{\sigma^2}{\rho} \propto a^{4\kappa} \stackrel{a \searrow 0}{\longrightarrow} 0
$$

- In other words, anisotropies can never develop
- Only microphysical example of $\eta \propto \sqrt{\rho}$, which was known as a parametrisation to lead to an isotropic singularity (full isotropisation by the $time\ a=0$) Belinski [1310.5112], Belinski & Henneaux, Ganguly & Bruni [1902.06356], Ganguly [2008.02286]

Summary

- In GR with a $T_{\mu\nu}$ satisfying the DEC, anisotropies always end up dominating in a contracting universe
	- \rightarrow it's a problem for bouncing cosmology
	- \rightarrow e.g., it would involve fine tuning the ICs in matter domination more than to resolve the curvature problem of standard big bang cosmology (see additional slides)
- Ekpyrosis ($p_{\phi} > \rho_{\phi}$) appears well suited and robust as a resolution to this problem
- Other resolutions exist though:
	- \blacktriangleright massive gravity
	- \triangleright viscous fluid (any realistic interacting fluid)
	- In other modified gravity (e.g., limiting curvature Sakakihara, Yoshida, Takahashi & JQ [2005.10844]; see additional slides)

Summary

Isotropisation due to viscosity:

- Finite- $T \lambda \phi^4$ theory can robustly isotropise the universe to radiation-dominated FLRW for $\mathcal{O}(100)$ e-folds, but not all the way to arbitrarily small a
	- \rightarrow could still be part of a bigger scenario
- Dust-like fluid as a dilute gas of black holes exhibits viscosity, but not enough to remain isotropic
	- \rightarrow still BKL unstable, so no good for matter bounce
- Hypothetical dense black hole gas is viscous $(\eta \propto \sqrt{\rho})$ and is robust against the growth of anisotropies
	- \rightarrow relevant for stringy constructions proposing this state of matter
- \Rightarrow Realistic fluids have interactions at the microscopic level and therefore viscosity, which can often play an important role in the cosmology \longrightarrow e.g., gravitational wave damping

Thank you for your attention!

I acknowledge support from the following agencies:

Additional slides

How much of a problem?

Can't we fine-tune the initial conditions? Levy [1611.08972]

• Recall

$$
\Omega_k \equiv \frac{\rho^{(\text{curv.})}}{3H^2} \propto \frac{1}{(aH)^2} = \frac{1}{\dot{a}^2}
$$

• Flatness problem in standard big bang cosmology (say radiation dominated with $a \propto \sqrt{t}$, $T \propto 1/a$):

$$
\frac{\Omega_k(t_{\text{today}})}{\Omega_k(t_{\text{Pl}})} = \frac{t_{\text{today}}}{t_{\text{Pl}}} = \left(\frac{T_{\text{Pl}}}{T_{\text{today}}}\right)^2 \approx e^{146}
$$

 \rightarrow Exaggerated here, but that's why we typically say that we need 60 e-folds of inflation, where

$$
\mathcal{N} \propto \ln(a|H|)
$$

• Say we want 60 e -folds of matter-dominated contraction now with

$$
a \propto |t|^{2/3} \implies |H| \propto a^{-3/2}
$$

$$
\implies \mathcal{N} \equiv \ln\left(\frac{a|H|}{a_0|H_0|}\right) = \frac{1}{2}\ln\left(\frac{a_0}{a}\right)
$$

• Anisotropy problem $(f \equiv \rho^{\text{(ani.)}}/\rho^{\text{(mat.)}})$:

$$
\frac{f}{f_0} = \left(\frac{a}{a_0}\right)^{-3} = e^{6\mathcal{N}} \stackrel{!}{=} e^{360}
$$

- Big fine-tuning problem. Way more than the flatness problem of standard big bang cosmology
- \Rightarrow Very hard to get 'stable' matter-dominated contraction

Limiting (extrinsic) curvature

$$
\mathcal{L} \supset \chi \mathcal{I} - V(\chi) \stackrel{\delta_{\chi} S = 0}{\Longrightarrow} \mathcal{I} = V'(\chi) \quad \text{[here } \mathcal{I} = \mathcal{I}(K_{\mu\nu}, h_{\mu\nu}, D_{\mu})]
$$

$$
|V'(\chi)| \le \text{const.} \implies |\mathcal{I}| \le \text{const.}
$$

• Can we construct $\mathcal{I} \propto \sigma^2$ in Bianchi I? Sure:

$$
\mathcal{I} \equiv K^{\mu}{}_{\nu} K^{\nu}{}_{\mu} - \frac{1}{3} (K^{\mu}{}_{\mu})^2 \stackrel{\text{BI}}{=} 6\sigma^2
$$

• Then, introduce a new vector field A_{μ} with

$$
\mathcal{L} \supset \lambda (A_{\mu}A^{\mu} + 1) \stackrel{\delta_{\lambda}S=0}{\Longrightarrow} A_{\mu}A^{\mu} = -1
$$

 \rightarrow defines a hypersurface with normal unit timelike vector $n^{\mu} = A^{\mu}$, so then $\mathcal{I}=\nabla^{\mu}A_{\nu}\nabla^{\nu}A_{\mu}-\frac{1}{3}(\nabla^{\mu}A_{\mu})^{2}$ and the whole theory has

$$
\mathcal{L} \supset \frac{R}{2} + \lambda (A_\mu A^\mu + 1) + \chi \left(\nabla^\mu A_\nu \nabla^\nu A_\mu - \frac{1}{3} (\nabla^\mu A_\mu)^2 \right) - V(\chi)
$$

 \rightarrow generalised mimetic/cuscuton/æther gravity in which shear anisotropies cannot blow up! Sakakihara, Yoshida, Takahashi & JQ [2005.10844]