
Isotropisation in the
Approach to a Singularity

Jerome Quintin
Max Planck Institute for Gravitational Physics
(Albert Einstein Institute), Potsdam, Germany

Copernicus Webinar Series
October 25th, 2021

Mainly based on
Ganguly & JQ [arXiv:2109.11701]



Motivation

• The early universe can be explained by a period of inflation after the
big bang
−→ produces a flat, isotropic universe with scale-invariant
curvature perturbations

• However, other alternatives exist that could also explain the early
universe
−→ often involves physics ‘before the big bang’

• E.g., bouncing cosmology, where the ‘primordial physics’ occurs
during a contracting phase (prior to a bounce and the onset of
standard big bang cosmology with radiation domination)
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Bouncing cosmology
X Flatness problem: Ω = 1, where (8πGN = 1 throughout this talk)

Ω ≡ ρmatter

3H2
= 1 +

k

(aH)2
,

is an attractor for ȧ < 0 and 1 + 3w > 0 (w ≡ p/ρ):

Friedmann eqs. =⇒ d|Ω− 1|
dt

= (1 + 3w)

(
ȧ

a

)
Ω(Ω− 1)

X Horizon problem: comoving horizon |aH|−1 is very large initially and
shrinks

X Structure formation problem: certain fields can generate
scale-invariant scalar perturbations, e.g.,
• adiabatic ‘dust field’ Wands [gr-qc/9809062], Finelli & Brandenberger [hep-th/0112249]

• entropic negative exponential scalar field (ekpyrotic) Lehners et

al. [hep-th/0702153], Buchbinder et al. [hep-th/0702154]
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Bouncing cosmology

7 Anisotropy problem: anisotropies typically tend to grow and dominate
over everything else as a↘ 0 (in the approach to the would-be big
crunch singularity)

For different components with ρ(w) ∝ a−3(1+w) (w < 1),

3H2 = Λ− k

a2
+
ρ
(mat.)
0

a3
+
ρ
(rad.)
0

a4
+
ρ
(ani.)
0

a6
.

(This does not appear to be a problem for matter with w > 1.)

⇒ Any bouncing alternative to inflation that wants to be viable and
legitimately considered must solve these problems:
I anisotropies must not disrupt the contracting background that

generates the right perturbations;
I anisotropies must not disrupt the bounce.
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Anisotropy evolution in GR with a perfect fluid
• Consider a Bianchi type-I metric:

gµνdxµdxν = −dt2 + a(t)2
3∑

i=1

e2β(i)(t)(dxi)2 ,

3∑

i=1

β(i)(t) = 0

a(i) = aeβ(i) , ln a = 〈ln a(i)〉 , H ≡ ȧ/a = 〈H(i)〉 , H(i) = H + β̇(i)

• Hypersurface with timelike unit normal uµ has

Kµν︸︷︷︸
extr. curv.

= (gµν + uµuν︸ ︷︷ ︸
hµν

)H+σµν︸︷︷︸
shear

, σi
j = β̇(i)δi

j , σ2 ≡ 1

2
σijσ

ij =
1

2

3∑

i=1

β̇2
(i)

• Einstein field equations =⇒ FLRW + shear anisotropy component:

3H2 = ρ+ σ2 , 2Ḣ = −(ρ+ p)− 2σ2

σ̇i
j + 3Hσi

j = 0 =⇒ β̈(i) + 3Hβ̇(i) = 0 =⇒ β̇(i) ∝ a−3

=⇒ pσ = ρσ = σ2 =
1

2

3∑

i=1

β̇2
(i) ∝ a−6
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Anisotropy evolution in GR with a perfect fluid

I Shear anisotropy component behaves as a set of massless scalar
fields L = −1

2∂µβI∂
µβI , i.e., with stiff EoS

I When the shear anisotropy component dominates,

H2 ∼ σ2 ∝ a−6 =⇒ a(t) ∼ |t|1/3

−→ Kasner singularity as t↗ 0
−→ ‘Belinski-Khalatnikov-Lifshitz (BKL) instability’

I Tuning the initial conditions for anisotropies to remain subdominant
would be quite huge (see additional slides)
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Ekpyrosis

• How about scalar fields with negative exponential potential?

L =
∑

I

(
−1

2
∂µφI∂

µφI + VIe
−cIφI

)
, VI > 0 , c2I > 6

• Those can arise as moduli of higher-dim. brane constructions in string
theory (e.g., distance between ‘end-of-the-world’ branes)

• Background scaling solution:

a(t) ∝ (−t)1/ε , ε ≡ − Ḣ

H2
=

1

2

(∑

I

c−2I

)−1
> 3 , w =

2ε

3
− 1 > 1

• Direction ⊥ to background trajectory in field space generates
scale-invariant scalar perturbations
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Isotropisation in ekpyrosis
• Ekpyrotic fields dilute anisotropies

3H2 = ...+
ρ
(ani.)
0

a6
+
ρ
(ek.)
0

a2ε
, ε > 3

−→ FRW is an attractor “Cosmic no hair for collapsing universes”, Lidsey [hep-th/0511174]

• Highly efficient and even robust to large anisotropic, curved, and
inhomogeneous ICs Garfinkle et al. [0808.0542], figure below addapted from Ijjas et al. [2006.04999]

Jerome Quintin (AEI Potsdam) Isotropisation in the approach to a singularity [arXiv:2109.11701] 8 / 25



Isotropisation with massive gravity
• In GR:

S ⊃
∫

d3xdt a3
(

1

2
β̇2
(i)

)
δβ(i)S=0

=⇒ β̈(i) + 3Hβ̇(i) = 0

• But if the graviton has a mass mg:

S ⊃
∫

d3xdt a3
(

1

2
β̇2
(i) −

1

2
m2
gβ

2
(i)

)
δβ(i)S=0

=⇒ β̈(i) + 3Hβ̇(i) +m2
gβ(i) = 0

• If m2
g � H2, then anisotropies behave like an oscillating massive field with

matter EoS in average: the EOMs are solved for

β(i)(t) ∝
sin(mgt)

mgt
, H(t) =

2

3t
=⇒ ρσ =

1

2

3∑

i=1

(
β̇2
(i) +m2

gβ
2
(i)

)
∝ a−3

⇒ Anisotropies may be subdominant even during matter domination!

⇒ Solves many issues of “matter bounce cosmology” at once
Lin, Brandenberger & JQ [1711.10472]
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Isotropisation with massive gravity
• 0-mode tensor perturbations ≡ anisotropies:

δgij = a2γij =⇒ σi
j =

1

2
γ̇i
j

=⇒ S ⊃
∫

d3xdt a3
(

(γ̇i
j)2 − (~∇γij)2 −m2

g(γi
j)2
)

~∇γij→0
=⇒ γ̈i

j + 3Hγ̇i
j +m2

gγi
j = 0 −→ γi

j suppressed

⇒ Solves the large tensor-to-scalar ratio problem of matter bounce cosmology
JQ et al. [1508.04141], Li, JQ et al. [1612.02036]

• mg . O(10−23 eV) today =⇒ mg would have had to be time dependent to
have mg > |Hbounce|

• Adding a mass to a spin-2 field typically excites 3 new d.o.f.

• Only the 2 standard polarisation modes if Lorentz invariance is partially
broken Dubovsky et al. [hep-th/0411158], Lin & Labun [1501.07160], Lin & Sasaki [1504.01373], Domènech et

al. [1701.05554], Lin & Mukohyama [1708.03757], Kuroyanagi et al. [1710.06789]
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Isotropisation with a non-perfect fluid
Details in Ganguly & JQ [arXiv:2109.11701] from here on

• Ignoring heat transfer,

Tµν = ρuµuν + phµν + πµν

−→ EOMs are modified:

ρ̇+ 3H(ρ+ p) = −πijσij , σ̇i
j + 3Hσi

j = πi
j

• A fluid with shear viscosity has an anisotropic stress according to

πij = −2ησij

I AdS/CFT points to a universal lower bound on shear viscosity
e.g., Son & Starinets [0704.0240]

η

s
≥ 1

4π

I From kinetic theory,
η ∼ csρ`mfp
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Toy model: finite-temperature interacting field theory

• Canonical scalar field, minimally coupled to gravity, with potential

V (φ) =
1

2
m2φ2 +

λ

4!
φ4

Extreme regimes:
I T � m, matter-like, ρ ∼ a−3
I T � m/λ, radiation-like, ρ ∼ a−4 ∝ T 4

• At high-T , the λφ4 self interaction implies a cross-section

σ ∼ λ2

T 2
=⇒ `mfp ∼

1

nσ
∼ 1

λ2T
=⇒ η ∼ ρ`mfp ∼

T 3

λ2
∝ a−3

I Note that η/s ∼ 1/λ2 & 1 for λ . 1
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Isotropisation with an interacting scalar field theory

• Shear evolution (η = κ/a3, κ > 0):

σ̇i
j + 3Hσi

j = πi
j = −2ησi

j =⇒ σ̇i
j + 3Hσi

j = −2
κ

a3
σi
j

• Assuming radiation domination initially (FLRW), a(t) =
√
t/t0

(t, t0 < 0) and the solution reads

σ2 ∝ 1

a6
exp

(
−8κ|t0|

a

)
a↘0−→ 0

⊗ Caveat: one cannot trust this all the way to a↘ 0 since viscosity only
makes sense on length scales smaller than the size of the system,
here when `mfp < |H|−1, but `mfp ∼ T−1 ∼ a and H2 ∼ ρ ∼ a−4

⊗ In the similar spirit, it does not make sense to take the λ↘ 0 limit
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Isotropisation with an interacting scalar field theory

• Consider a situation where shear is already dominating the universe

I Can the viscosity from the subdominant radiation-like interacting
scalar field isotropise the universe while in the regime `mfp < |H|−1?

I Let’s numerically solve

ρ̇+ 4Hρ =
4T 3

0

λ2

(a0
a

)3
σ2 , σ̇i

j + 3Hσi
j = −2T 3

0

λ2

(a0
a

)3
σi
j

λ = 10−3 , H0 = −10−50 ,
σ20
ρ0

= 1015
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Isotropisation with an interacting scalar field theory
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ln
(

aH
a0H0

)
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Isotropisation with an interacting scalar field theory

• Is this robust to the inclusion of curvature anisotropies?

I In a Bianchi type-IX spacetime,

hij = a2 diag
(
e2β++2

√
3β− , e2β+−2

√
3β− , e−4β+

)

U(β+, β−) =
1

4
e−8β+ − e−2β+ cosh

(
2
√

3β−

)
+ e4β+ sinh2

(
2
√

3β−

)

3H2 = ρ+ σ2 +
1

a2
U(β+, β−) , −2Ḣ = ρ+ p+ 2σ2 +

2

3a2
U(β+, β−)

ρ̇+ 3H(ρ+ p) = 4ησ2 , β̈± + 3Hβ̇± +
1

6a2
∂β±U = −2ηβ̇± , σ2 = 3(β̇2

+ + β̇2
−)
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Isotropisation with an interacting scalar field theory
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3H2

0
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1
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3H2

0

= 1 ,
(3)R0

6H2
0

=
1

10

0 5 10 15
− ln(a/a0)

0.0

0.2

0.4

0.6

0.8

1.0

with viscosity

curvature
shear
radiation

0 5 10 15
− ln(a/a0)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
na

le
ne

rg
y

de
ns

ity

without viscosity

Jerome Quintin (AEI Potsdam) Isotropisation in the approach to a singularity [arXiv:2109.11701] 17 / 25



What about other cosmic fluids exhibiting viscosity

• Consider a gas of nearly pressureless dust-like matter: this is typically
unstable to gravitational collapse

I Fluid with small sound speed =⇒ gravitational instability
=⇒ black hole formation JQ & Brandenberger [1609.02556], Chen et al. [1609.02571]

I Black holes attract each other gravitationally (they ‘interact’)
=⇒ a ‘fluid of black holes’ is viscous

I Small black holes (R� |H|−1), dilute gas:

σ ∼
(
R

c2s

)2

, `mfp ∼
1

nσ
∼ c4s
ρR

, η ∼ csρ`mfp ∼
c5s
R
≈ const.

σ̇i
j + 3Hσi

j = −2ησi
j =⇒ σ2 ∼ e4η|t|

a6
, |t| ↘ 0
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Dilute dust-like black hole gas
I If the background is matter dominated at first (FLRW),

σ2

ρ
=
(a0
a

)3
exp

[
− 4η

3|H0|

(
1−

(
a

a0

)3/2
)]

I One has isotropisation only if σ2/ρ is decreasing, which can happen if

η >
3

2
|H0| ≡ ηmin

0 10 20 30 40 50
ln(aH/a0H0)

10−135

10−110

10−85

10−60

10−35

10−10

σ
2
/ρ

0.00

0.33

0.66

0.99

1.32

1.65

1.98

lo
g

1
0
(η
/η

m
in

)
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Dilute dust-like black hole gas

⊗ The problem here is that η > ηmin only if

c5s > R|H0| ,

but recall that viscosity only makes sense if `mfp < |H|−1, which
amounts to

c4s . R|H| .

7 Therefore, a dilute gas of black holes cannot realistically be viscous
enough to isotropise a dust-like contracting universe
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Let’s push the black hole gas picture to the limit
• Imagine large black holes (R ∼ |H|−1) that dominate the universe near a

big crunch

• Conjectured to be the state of matter at high density in the early universe,
e.g., in string theory Banks & Fischler [many papers], Veneziano [e.g., hep-th/0312182], Masoumi & Mathur

[1406.5798], Masoumi [1505.06787], JQ, Brandenberger, Gasperini & Veneziano [1809.01658], Mathur [2009.09832]

• Consider a volume with N ∼ V/R3 black holes:

E ∼ NM ∼ V

R2
, S ∼ NR2 ∼ V

R
=⇒ S ∼

√
EV

=⇒ T =

(
∂S

∂E

)−1

V

∼
√
E

V
=
√
ρ , p = T

(
∂S

∂V

)

E

=
E

V
= ρ

• Stiff p = ρ fluid with s ≡ S/V ∼ √ρ
• No shear by construction since we recover the Friedmann equation

ρ =
E

V
∼ 1

R2
∼ H2
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Dense black hole gas viscosity
• As before

σ ∼ R2 , `mfp ∼
1

nσ
∼ R , η ∼ 1

R
∼ |H| ∼ √ρ , η

s
= const.

I So for η = κ|H| with κ of order 1, we have

σ̇i
j + 3Hσi

j = 2κHσi
j =⇒ σ2 ∝ 1

a6−4κ

⇒ forbids anisotropies from winning over compared to the ‘stiff background’
with ρ ∝ a−6:

σ2

ρ
∝ a4κ a↘0−→ 0

• In other words, anisotropies can never develop

• Only microphysical example of η ∝ √ρ, which was known as a
parametrisation to lead to an isotropic singularity (full isotropisation by the
time a = 0) Belinski [1310.5112], Belinski & Henneaux, Ganguly & Bruni [1902.06356], Ganguly [2008.02286]
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Summary

• In GR with a Tµν satisfying the DEC, anisotropies always end up
dominating in a contracting universe
−→ it’s a problem for bouncing cosmology
−→ e.g., it would involve fine tuning the ICs in matter domination

more than to resolve the curvature problem of standard big bang
cosmology (see additional slides)

• Ekpyrosis (pφ > ρφ) appears well suited and robust as a resolution to
this problem

• Other resolutions exist though:
I massive gravity
I viscous fluid (any realistic interacting fluid)
I other modified gravity (e.g., limiting curvature Sakakihara, Yoshida, Takahashi &

JQ [2005.10844]; see additional slides)
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Summary
Isotropisation due to viscosity:

• Finite-T λφ4 theory can robustly isotropise the universe to
radiation-dominated FLRW for O(100) e-folds, but not all the way to
arbitrarily small a
−→ could still be part of a bigger scenario

• Dust-like fluid as a dilute gas of black holes exhibits viscosity, but not
enough to remain isotropic
−→ still BKL unstable, so no good for matter bounce

• Hypothetical dense black hole gas is viscous (η ∝ √ρ) and is robust
against the growth of anisotropies
−→ relevant for stringy constructions proposing this state of matter

⇒ Realistic fluids have interactions at the microscopic level and therefore
viscosity, which can often play an important role in the cosmology
−→ e.g., gravitational wave damping
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Thank you for your attention!

I acknowledge support from the following agencies:
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Additional slides
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How much of a problem?
Can’t we fine-tune the initial conditions? Levy [1611.08972]

• Recall

Ωk ≡
ρ(curv.)

3H2
∝ 1

(aH)2
=

1

ȧ2

• Flatness problem in standard big bang cosmology (say radiation
dominated with a ∝

√
t, T ∝ 1/a):

Ωk(ttoday)

Ωk(tPl)
=
ttoday
tPl

=

(
TPl
Ttoday

)2

≈ e146

−→ Exaggerated here, but that’s why we typically say that we need 60
e-folds of inflation, where

N ∝ ln(a|H|)
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• Say we want 60 e-folds of matter-dominated contraction now with

a ∝ |t|2/3 =⇒ |H| ∝ a−3/2

=⇒ N ≡ ln

(
a|H|
a0|H0|

)
=

1

2
ln
(a0
a

)

• Anisotropy problem (f ≡ ρ(ani.)/ρ(mat.)):

f

f0
=

(
a

a0

)−3
= e6N

!
= e360

• Big fine-tuning problem. Way more than the flatness problem of
standard big bang cosmology

⇒ Very hard to get ‘stable’ matter-dominated contraction
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Limiting (extrinsic) curvature

L ⊃ χI − V (χ)
δχS=0
=⇒ I = V ′(χ) [here I = I(Kµν , hµν ,Dµ)]

|V ′(χ)| ≤ const. =⇒ |I| ≤ const.

• Can we construct I ∝ σ2 in Bianchi I? Sure:

I ≡ Kµ
νK

ν
µ −

1

3
(Kµ

µ)2
BI
= 6σ2

• Then, introduce a new vector field Aµ with

L ⊃ λ(AµA
µ + 1)

δλS=0
=⇒ AµA

µ = −1

−→ defines a hypersurface with normal unit timelike vector nµ = Aµ, so then
I = ∇µAν∇νAµ − 1

3 (∇µAµ)2 and the whole theory has

L ⊃ R

2
+ λ(AµA

µ + 1) + χ

(
∇µAν∇νAµ −

1

3
(∇µAµ)2

)
− V (χ)

−→ generalised mimetic/cuscuton/æther gravity in which shear anisotropies
cannot blow up! Sakakihara, Yoshida, Takahashi & JQ [2005.10844]
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