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Motivation – Penrose & Hawking ‘singularity’ theorems
E.g., Penrose’s (1965):

• Assume the null convergence condition (a.k.a. NCC; Rµνk
µkν ≥ 0 ∀ kµ null,

i.e., gµνkµkν = 0)

Ric(k,k) ≥ 0 ∀ k s.t. g(k,k) = 0

▶ Assuming general relativity (Gµν := Rµν − 1
2gµνR = 8πGNTµν )

G := Ric− 1

2
g trg(Ric)︸ ︷︷ ︸

=:R

= 8πGNT (c = 1)

the NCC is equivalent to the null energy condition (NEC):

Tµνk
µkν ≥ 0 (T (k,k) ≥ 0) ∀ k null

• Assume ∃ a noncompact connected Cauchy surface inM
• Assume ∃ a closed trapped surface inM

=⇒ ThenM cannot be null geodesically complete
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E.g. for a null geodesic congruence
Raychaudhuri’s equation for a null hypersurface orthogonal congruence (no
vorticity):

dΘ

dλ
= −1

2
Θ2 − σ2 −Ric(k,k)

NCC
≤ −1

2
Θ2 ,

where Θ := ∇µk
µ = g(∇,k) = divgk is the expansion scalar,

σ2 := 1
2σµνσ

µν the shear, and λ an affine parameter, from which

Θ(λ)−1 ≥ Θ(λ = 0)−1 +
λ

2

Θ(λ=0)<0
=⇒ |Θ(λ)| → ∞ by λ ≤ 2

|Θ(λ = 0)|
,

so geodesics come together into a caustic in finite affine length
−→ geodesic incompleteness

From Poisson’s relativity textbook
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Does not always necessarily imply a singular spacetime

Courtesy of Daisuke Yoshida (Nagoya U.)

Cosmological spacetime extendibility for another talk perhaps e.g., Yoshida & JQ [arXiv:1803.07085],

Nomura & Yoshida [2105.05642]
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But when there is a scalar curvature singularity...
• At the centre of black holes and at the big bang,
|Riem2| = |RµνρσR

µνρσ| → ∞, and we are in a strong curvature regime
where general relativity’s semiclassical physics breaks down→ general
relativity is a non-renormalizable quantum field theory

• Consider gravitons propagating and scattering on a Minkowski background:
g = η +

√
GNh, the general relativity action reads

S =

∫
M

d4x
√

−det(g)︸ ︷︷ ︸
:=ϵ=⋆1=

√
−det(g)

∧3
ν=0 dxν

R

16πGN
∼

∫
M

d4x
(
(∂h)2 +

√
GNh(∂h)2 + . . .

)

From Hartman’s lectures on quantum gravity
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Non-renormalizibility continued
• Really an expansion in

√
GN/λ, where λ is the wavelength of the graviton

fluctuations, so the amplitude can be written

A(hh→ hh) ∼
∑
loops

(
GN

λ2

)1+number of loops

⇒ As λ ≲
√
GN, the perturbative expansion breaks down (strong coupling)

⇒ We cannot trust general relativity as a quantum theory when we reach that
regime

→ would require an infinite series of counterterms, schematically

S ⊃
∫
M

d4x
√
−det(g)

∞∑
n=0

cn,pG
n
N

n∑
p=0

scal
(
∇2pRiem2+n−p

)
→ This motivates going beyond general relativity, especially in strong curvature

regimes, such as near singularities
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Also, the NCC/NEC might not always hold
• Quantum mechanically, there are well-known (and well-accepted) examples

where matter violates the NEC, i.e., ⟨Tµνk
µkν⟩ < 0

(e.g., Casimir effect [Casimir (1948)])

• In quantum gravity, it might only hold in some averaged sense, e.g., the
averaged NEC (ANEC) for an achronal null geodesic γ reads∫

γ

⟨Tµνk
µkν⟩ ≥ 0

Proved in various contexts, e.g., Wald & Yurtsever (1991), Wall [0910.5751], Kontou & Olum [1507.00297]

• Various other proposals, e.g., the smeared NEC (SNEC):
see Freivogel and collaborators [1807.03808, 2012.11569, 2111.05772]∫ ∞

−∞
dλ g(λ)2 ⟨Tµνk

µkν⟩|xµ(λ)︸ ︷︷ ︸
⟨⟨Tµνkµkν⟩⟩τ

≥ −O(1)

GN

∫ ∞

−∞
dλ

(
dg(λ)

dλ

)2

︸ ︷︷ ︸
1/τ2

,

∫ ∞

−∞
dλ g(λ)2 = 1
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The point is...

the assumptions leading to the singularity theorems may well break down

▶ So are singularities ‘avoidable’ in quantum gravity?

▶ Could it even be that spacetime singularities are forbidden?

Various quantum gravity proposals (string theory, loop quantum gravity, etc.)
suggest some notion of fundamental, ‘minimal’ length scale (or maximal
curvature scale)

• But studying quantum gravity is very hard! Might require new mathematical
tools, e.g., low regularity geometry!

→ What we can try to do instead is to come up with an effective theory (of
gravity, so modifying general relativity), which could characterize the
low-curvature regime of quantum gravity

→ We can then test such a theory (does it yield sensible solutions? is it stable?
etc.)
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One approach
• They are many approaches to ‘modified gravity’, motivated by various physical

considerations

• One can construct classes of such theories that intrinsically have a maximal
curvature scale → limiting curvature theories (e.g., Yoshida, JQ, Yamaguchi & Brandenberger

[1704.04184], Sakakihara, Yoshida, Takahashi & JQ [2005.10844], but perhaps for another talk!)

• Let me present one such theory: the Cuscuton Afshordi, Chung & Geshnizjani [hep-th/0609150]

S =

∫
d4x

√
−det(g)

(
1

16πGN
R±M2

L

√
X − V (ϕ)

)
,

with X := −gµν∇µϕ∇νϕ = −g(∇ϕ,∇ϕ)

δS

δg
= 0 ⇒ G = 8πGNT = (ρ+ p)u⊗ u+ pg ,

where u = ±∇ϕ√
X

, ρ = V (ϕ) , p = ±M2
L

√
X − V (ϕ)

δS

δϕ
= 0 ⇒ K = M−2

L

dV

dϕ
, where K = g(∇,u) = divgu = ∇µu

µ = ±∇µ

(
∇µϕ√
X

)
i.e., the mean curvature K is the trace of the extrinsic curvature K on a constant-ϕ
hypersurface with normal unit vector u
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δS = 0
δϕ⇒ K = M−2

L

dV

dϕ
, where K = ±∇ ·

(
∇ϕ√

−∇ϕ ·∇ϕ

)
⇒ Constant-ϕ hypersurfaces are CMC surfaces

⇒ Bounded dV/dϕ yields bounded mean curvature→ may avoid singularities

⇒ ϕ respects a constraint equation, not an evolution equation

e.g., in a flat Friedmann-Lemaître-Robertson-Walker metric background

g = −dt⊗ dt+ a(t)2δijdx
i ⊗ dxj ,

the ϕ equation reduces to

∓sgn(ϕ̇)3M2
LH =

dV

dϕ
,

where ˙ := d/dt and the Hubble expansion/contraction rate is H := ȧ/a

• In comparison, a standard propagating scalar field has equation of motion

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0
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More on the Cuscuton
• So on such a cosmological background, we say that there are no new

degrees of freedom Afshordi, Chung, Doran & Geshnizjani [astro-ph/0702002], Gomes & Guariento [1703.08226],

and more (let me know if you want more references)

• This is an example of a minimal modification of gravity Lin & Mukohyama [1708.03757], ...

• Non-singular spacetimes can be found as solutions, e.g., cosmological
bounces Boruah, Kim, Rouben & Geshnizjani [1802.06818], JQ & Yoshida [1911.06040]

At the bounce: V < 0, dV
dϕ = 0, d2V

dϕ2 > 0
General relativity limit: V → 0
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Example of Cuscuton bounce solution

a(t) H(t) =
ȧ

a
∼ K Ḣ(t) ∼ −Ric(k,k)

Jerome Quintin (Fields and U. of Waterloo) Stability of singularity-resolving effective theories of gravity 12 / 19



Stability
• How can we know that the speculated theory makes any sense?

▶ Theoretically, it should be stable and not strongly coupled
▶ We should try to find some observational predictions

• Main tool: cosmological perturbation theory (g = ḡ + δg) See Ghazal’s previous talk

E.g., scalar perturbations (in the matter comoving gauge):

gµνdx
µdxν = − (1 + 2α(t, x⃗)) dt2+2∂iβ(t, x⃗)dtdx

i+a(t)2 (1 + 2ζ(t, x⃗)) δijdx
idxj

ϕ(t, x⃗) = ϕ̄(t) + δϕ(t, x⃗)

• The lapse and shift perturbations (α, β) can be eliminated by the constraint
equations. The Cuscuton perturbation (δϕ) can also be eliminated since it is
governed by a constraint equation. One is left with a single degree of
freedom, ζ, known as the curvature perturbation

• The action, expanded to 2nd order in the linear perturbations, is reduced to

S(2) =

∫
dtd3x⃗ az2

(
ζ̇
2
− c2s

a2
|∇⃗ζ|2

)
δS(2)/δζ=0

=⇒ ζ̈+

(
ȧ

a
+ 2

ż

z

)
ζ̇− c2s

a2
∇2ζ = 0

• Stability requires z2 > 0 and c2s > 0
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Avoiding quantum ‘ghost instability’
• The kinetic term, az2ζ̇2, tells you about the propagation; it’d better be > 0

• For scattering amplitudes to respect unitarity (conservation of probability in quantum
mechanics), the S matrix has to be unitary (S†S = 1, where S† is the Hermitian
adjoint), from which we can derive the optical theorem (writing S = 1+ iM, we must
have 2 ImM = M†M)

• A ‘correct sign’ kinetic term respects the theorem, while a ‘wrong sign’ generally
doesn’t =⇒ unitarity violation

• At best, negative energy ‘ghosts’ propagate, leading to a catastrophic instability of
the vacuum Cline, Jeon & Moore [hep-ph/0311312]
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Avoiding classical gradient instability

• Doing a change of variable for ζ, t, and x⃗, we can write the equation of
motion as

∂2ζ̃

∂t̃2
= c2s ∇̃2ζ̃ −→ wave equation

• We call cs the sound speed, and we’d better have c2s > 0 for the PDE to be
hyperbolic to have a well-posed initial value problem; otherwise PDE is
elliptic (or parabolic)

• In Fourier space (let me drop the tildes here)

d2ζk⃗
dt2

+ c2s |⃗k|2ζk⃗ = 0
c2s>0
=⇒ ζk⃗(t) ∼ exp

(
±i|⃗k|

∫
dt cs

)
−→ oscillatory

c2s < 0 =⇒ ζk⃗(t) ∼ exp

(
±|⃗k|

∫
dt |cs|

)
−→ ∃ exponentially growing term

=⇒ gradient instability
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About the Cuscuton again
• It is confirmed that the theory is linearly stable on a cosmological background

(including bouncing ones), i.e., it has no ghost and no gradient instability Boruah, Kim &

Geshnizjani [1704.01131], Boruah, Kim, Rouben & Geshnizjani [1802.06818], JQ & Yoshida [1911.06040]

• Actually very hard to achieve in general for an effective theory allowing geodesically
complete spacetimes Libanov et al. [1605.05992], Kobayashi [1606.05831], Cai et al. [1610.03400], Creminelli et

al. [1610.04207], ...

▶ Still, is the theory strongly coupled? Usually hard to avoid in a high-curvature,
NCC-violating regime. But the Cuscuton is nice, so probably not (still under
investigation) Dehghani, Geshnizjani & JQ

▶ And could there be specific observational signatures of such a Cuscuton bounce?
Also under investigation Dehghani, Geshnizjani & JQ

Expand action to 3rd order in perturbations:

S(3) =

∫
d3x⃗dt

(
A1ζ̇

3 +A2ζζ̇
2 + . . .

)
; we want

A1ζ̇
3

az2ζ̇2
< 1 , · · ·

• S(2) used to compute ⟨ζ2⟩; S(3) needed to compute ⟨ζ3⟩
• Equations could also be solved in full (i.e., non-perturbatively) using numerical

relativity techniques
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Take-home messages

• Classical general relativity singularity theorems are nice, but it is unknown
what applies in quantum gravity

• Classical general relativity most likely breaks down before reaching
singularities

• If we modify gravity in the high-curvature regime, we can construct theories
that avoid singularities altogether

• We can then check if the theories are stable and what predictions they make
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Open questions

• About the Cuscuton:

▶ Connection to potential ultraviolet completions (i.e., validity up to
arbitrarily high energy scales, as in quantum gravity) Afshordi [0907.5201,

1003.4811], Bhattacharyya et al. [1612.01824], ...

▶ What about black holes? What happens to the singularity there?
▶ Can the theory make sense (and be stable) on arbitrary backgrounds?
▶ What can the existence of CMC surfaces tell us?
← last couple of questions for mathematicians!

• More generally (to connect mathematicians and physicists):

▶ Are there useful tools to study/construct spacetimes with an upper
bound on the curvature?

▶ Can we construct theories of non-smooth spacetimes? Can there be a
smooth continuum limit and what would it be? What tools of
non-smooth geometries can we use to start doing physics on such
spacetimes?
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Thank you for your attention!

Questions?
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