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Premise
• General Relativity is a classical theory of gravity, which breaks down at small

length scales due to quantum effects — as a quantum field theory, it is

non-renormalizable Goroff-Sagnotti [1986]

• Many theories of quantum gravity suggest some notion of minimal,
fundamental length scale ℓf (≳ ℓPl), below which there might be no notion
of continuum spacetime — spacetime may be discrete at that scale and the
spacetime continuum may emerge above ℓf

• E.g., ℓs ∼ g
2

2−D
s ℓPl in string theory, Amin ∼ βBarbero-Immirziℓ

2
Pl in Loop Quantum Gravity

see Hossenfelder [1203.6191] for a review

• It is important to attempt constructing top-down approaches to quantum
gravity (further examples: non-commutative geometry, spin foam, causal dynamical

triangulation, causal sets, etc.), but it is a hard problem
• An alternative is to explore a bottom-up, effective theory of quantum gravity,

e.g., construct a smooth theory of gravity (modifying general relativity),
which has a built-in minimal length scale

• This procedure of building a theory from the bottom-up, imposing expected features of

ultraviolet completion, is often applied in particle physics (and more and more in cosmology)
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Bounding physical quantities:
special relativity as a warm-up
• Start with a non-relativistic free particle of mass m and (unbounded)

speed v, whose Lagrangian reads

L =
1

2
mv2

• To make it relativitic, add a Lagrange multiplier term to limit the speed
(special relativity must have |v| < c = 1 for a massive particle):

L = m

(
1

2
v2 + χv2 − V (χ)

)
, V (χ) =

2χ2

1 + 2χ

∂L

∂χ
= 0 =⇒ v2 =

dV

dχ
= 1− 1

(1 + 2χ)2
=⇒ v2 < 1 ∀χ ∈ (−∞,∞)

• χ is an auxiliary (non-dynamical) scalar field

• Solving the above for χ = χ(v2) and substituting back in L precisely yields
the special relativity Lagrangian:

L = m
√
1− v2
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Same strategy for gravity

• Original idea dates back to the 1980s [Markov, Ginsburg, Mukhanov, Frolov, ...]

• Start with the action for general relativity (the Einstein-Hilbert term
proportional to the Ricci scalar R, the trace of the Ricci tensor), but let’s add
a set of ‘curvature-limiting terms’ through Lagrange multipliers (8πGN = 1):

S =

∫
M

d4x
√

−det g

R

2
+

n∑
j=1

χjIj(Riem; g;∇)− V (χ1, . . . , χn)


δS

δχj
= 0 =⇒ Ij =

∂V

∂χj
;

∣∣∣∣ ∂V∂χj

∣∣∣∣ < ∞ =⇒ |Ij | < ∞

• The Ij(Riem; g;∇)s are scalar curvature-invariant functions, constructed
out of the Riemann tensor Riem, contractions with the metric g, and
covariant derivatives ∇ thereof, which we can bound if the potential V is
chosen such that the components of its field-space gradient are everywhere
bounded
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An example
Mukhanov-Brandenberger [1992], Yoshida-JQ-Yamaguchi-Brandenberger [1704.04184]

• Let’s have two Lagrange multiplier terms with (G is the Gauss-Bonnet
curvature invariant, given by R2 − 4|Ric|2 + |Riem|2):

I1 = R+
√
R2 − 6G , I2 =

√
R2 − 6G

• On a flat cosmological background (a.k.a. FRW; a(t) is the scale factor),

g = −dt2 + a(t)2dx2 ,

these reduce to

I1 ∝
(
d ln a

dt

)2

= H2 , I2 ∝ d2 ln a

dt2
=

dH

dt
,

so one can construct solutions for which the metric is (C2) non-singular

• Mukhanov-Brandenberger showed examples where the solutions where
smoothly non-singular, approaching de Sitter or Minkowski spacetimes
asymptotically

• Moreover, background and linear perturbations about the background have
at most second-order equations of motion ✓
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The challenge
Yoshida-JQ-Yamaguchi-Brandenberger [1704.04184]

• The previous theory is equivalent to a particular form of f(R,G) gravity,
where

S =

∫
M

d4x
√
−det g f(R,G)

• The problem is that this theory is well-known to be problematic: some corner
of phase space will always remain unstable (ghost or gradient instability)
see my previous seminar at Fields for an introduction to this topic

• Moreover, as soon as one introduces the slightest anisotropy, a ghost
(otherwise absent about FRW) always appears De Felice-Tanaka [1006.4399]

• Introducing higher spacetime curvature terms in the gravitational effective
action is ubiquitous (especially toward high-curvature scales) and such
terms can be constrained e.g., Caron-Huot+ [2201.06602], de Rham+ [2203.06805], but often,
either the theory remains singular, either it is unstable e.g., Yoshida-Brandenberger

[1801.05070]
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A modified approach: the setup
• Let us perform a 3 + 1 splitting of the spacetime with timelike unit vector n

[g(n,n) = n · n = −1], normal to a hypersurface Σ with induced spatial
metric γ [γ = g + n⊗ n]

• The metric can be written in terms of the lapse N and shift β:

g = −Ndt2 + γij(dx
i + βidt)(dxj + βjdt)

Figure from Gourgoulhon

• The extrinsic curvature (second fundamental form) on Σ and its trace are

K = ∇n+ n⊗∇nn , K = ∇ · n

• Spacetime curvature ((4)Riem, (4)Ric, (4)R, ...) can be fully rewritten in
terms of those quantities (K, (3)R, ...)
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A modified approach: the idea and construction
Limiting Extrinsic Curvature Theory, Sakakihara-Yoshida-Takahashi-JQ [2005.10844]

• In the 3 + 1 splitting of the geometry, let us assume time remains smooth,
but let us try to bound spatial curvature, i.e., 3-dimensional spatial curvature
invariants rather 4-d spacetime quantities:

S = Sgen. rel. +

∫
dt

∫
Σ

d3xN
√

detγ

(
n∑

j=1

χjIj(K;γ;D)− V (χ1, . . . , χn)

)
• We need to introduce a field (e.g., a scalar ϕ or a vector A) that defines our

spatial hypersurface (very common when Lorentz invariance is
[spontaneously] broken, e.g., in cosmology):

n =

{
∇ϕ

A

• Let us take a vector field from here on. Then, we must enforce the
normalization A ·A = −1 through an additional constraint, thus introducing
an additional Lagrange multiplier λ term in the action:∫

d4x
√
−det g λ(A ·A+ 1)
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A simple realization
Sakakihara-Yoshida-Takahashi-JQ [2005.10844]

• Let us consider a single curvature invariant, K = ∇ · n = ∇ ·A:

S =

∫
dt

∫
Σ
d3xN

√
detγ

( 1

2

(
|K|2 −K2 + (3)R

)
︸ ︷︷ ︸

gen. rel.

+λ(A ·A+ 1) + χK − V (χ)
)

• A potential with |dV/dχ| < ∞ ensures |K| < ∞ thanks to

δS

δχ
= 0 =⇒ K =

dV

dχ

• We recognize this constraint as the Cuscuton constraint, and the theory is indeed equivalent to
the Cuscuton Afshordi-Chung-Geshnizjani [hep-th/0609150]; see my previous seminar at Fields

δS

δA
= 0 =⇒ A =

1

2λ
∇χ

=⇒ S = Sgen. rel. +

∫
d4x

√
−det g

(
±
√

−∇χ ·∇χ − V (χ)
)

• On a cosmological background, K = 3H, so a non-singular (bouncing) universe can follow,

with stable linear inhomogeneities Boruah-Kim-Rouben-Geshnizjani [1802.06818], JQ-Yoshida [1911.06040]
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Relation to other theories
Sakakihara-Yoshida-Takahashi-JQ [2005.10844]

• Solving the constraint K = dV/dχ for χ = χ(K) (which one can do if
d2V/dχ2 ̸= 0), then with the Legendre transform

F (K) = Kχ(K)− V (χ(K)) ,

we can rewrite the action as

S =

∫
dt

∫
Σ

d3xN
√

detγ
(1
2

(
|K|2 −K2 + (3)R

)
+ F (K)

)
• This makes it manifest that the theory modifies general relativity (changes its K2

term), yet does not introduce any additional degrees of freedom (only 2 tensor pert.)
— it is a subclass of such theories that only minimally modify gravity e.g., Lin-Mukohyama [1708.03757],

Mukohyama-Noui [1905.02000], Gao-Yao [1910.13995]

• Other theories are of the above F (K) form, including the low-energy limit of
Horǎva-Lifshitz gravity, a proposal for quantum gravity explicitly breaking Lorentz
invariance — the equivalence with the Cuscuton is manifest for a particular potential Afshordi

[0907.5201], Bhattacharyya+ [1612.01824], Chagoya-Tasinato [1805.12010]

• Other choices of F (K) result in the same equations as those of Loop Quantum
Cosmology or Group Field Theory, known to predict a non-singular (bouncing)
universe Chamseddine-Mukhanov [1612.05860], Bodendorfer-Schäfer-Schliemann [1703.10670], Langlois+ [1703.10812],

de Cesare [1812.06171,1904.02622]
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Conclusions and discussion
• One might expect some notion of limited curvature in quantum gravity

▶ Can we find a consistent low-energy effective theory, which manifests
this property?

• Limiting Extrinsic Curvature Theory is a nice setup to build such theories,
especially in the context where a preferred frame is selected (e.g.,
cosmology)

• A simple realization leads to the Cuscuton, which connects with different
proposals for quantum gravity — furthermore, the theory passes several
sanity checks and has interesting phenomenology (e.g., bouncing
cosmology)

• Extensions and further pheno: one can bound more than one curvature
invariant, e.g., adding a term bounding |K|2 −K2/3 enables one to limit the
growth of anisotropies in Bianchi spacetimes Sakakihara-Yoshida-Takahashi-JQ [2005.10844]

=⇒ evades the BKL approach to singularities

• Future directions: observational prediction in the early universe?
non-perturbative stability (using numerical relativity)?
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Thank you for your attention!

Questions?
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