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Premise

General Relativity is a classical theory of gravity, which breaks down at small
length scales due to quantum effects — as a quantum field theory, it is
non-renormalizable Goroff-Sagnotti [1986]

Many theories of quantum gravity suggest some notion of minimal,
fundamental length scale ¢ (= ¢p;), below which there might be no notion
of continuum spacetime — spacetime may be discrete at that scale and the

spacetime continuum may emerge above /¢
2

E.g. £s ~ g5~ 7 £py in string theory, Amin ~ BBarbero-Immirzifs, i Loop Quantum Gravity

see Hossenfelder [1203.6191] for a review

It is important to attempt constructing top-down approaches to quantum
gravity (further examples: non-commutative geometry, spin foam, causal dynamical
triangulation, causal sets, etc.), but it is a hard problem

An alternative is to explore a bottom-up, effective theory of quantum gravity,
e.g., construct a smooth theory of gravity (modifying general relativity),
which has a built-in minimal length scale

This procedure of building a theory from the bottom-up, imposing expected features of
ultraviolet completion, is often applied in particle physics (and more and more in cosmology)
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Bounding physical quantities:
special relativity as a warm-up

o Start with a non-relativistic free particle of mass m and (unbounded)
speed v, whose Lagrangian reads

L = —mv?
2

e To make it relativitic, add a Lagrange multiplier term to limit the speed
(special relativity must have |v| < ¢ = 1 for a massive particle):

1 ( 2y 2
L: —_ 2 ','2— =
m(Qv + xv V(x)) ;o VY 5oy
oL dv 1
-0 27 1 - Z<1Vyxe (-
Ix = v dy TETE = v X € (—00,00)

e  is an auxiliary (non-dynamical) scalar field

e Solving the above for Y = x(v?) and substituting back in L precisely yields
the special relativity Lagrangian:

L=my\1—2
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Same strategy for gravity

e Original idea dates back to the 1980s [markov, Ginsburg, Mukhanov, Frolov, ..]

e Start with the action for general relativity (the Einstein-Hilbert term
proportional to the Ricci scalar R, the trace of the Ricci tensor), but let’s add
a set of ‘curvature-limiting terms’ through Lagrange multipliers (87Gn = 1):

R n
S = / d*z\/—detg 3 + Z X;Z;(Riem; g; V) — V(x1,.--, Xn)
M

j=1
08 % ov
— ) — T — —— —| <00 = |Z;| <
0X; 9x; 9x;

e The Z;(Riem; g; V)s are scalar curvature-invariant functions, constructed
out of the Riemann tensor Riem, contractions with the metric g, and
covariant derivatives V thereof, which we can bound if the potential V' is

chosen such that the components of its field-space gradient are everywhere
bounded
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An example

Mukhanov-Brandenberger [1992], Yoshida-JQ-Yamaguchi-Brandenberger [1704.04184]

e Let's have two Lagrange multiplier terms with (G is the Gauss-Bonnet
curvature invariant, given by R? — 4|Ric|? + |Riem|?):

7y =R+ +VR?-6G, I =V R? - 6G
e On a flat cosmological background (a.k.a. FRW; a(t) is the scale factor),
g = —dt? +a(t)?dx?,

these reduce to

dlna\? d21 dH
Ilo(< na) :f]27 IZO(ﬁzi

de? dt ’
so one can construct solutions for which the metric is (C?) non-singular
e Mukhanov-Brandenberger showed examples where the solutions where

smoothly non-singular, approaching de Sitter or Minkowski spacetimes
asymptotically

e Moreover, background and linear perturbations about the background have
at most second-order equations of motion v/
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The challenge
Yoshida-JQ-Yamaguchi-Brandenberger [1704.04184]

e The previous theory is equivalent to a particular form of f(R, G) gravity,

where
S :/ d*z \/—detg f(R,G)
M

e The problem is that this theory is well-known to be problematic: some corner
of phase space will always remain unstable (ghost or gradient instability)

see my previous seminar at Fields for an introduction to this topic

e Moreover, as soon as one introduces the slightest anisotropy, a ghost
(otherwise absent about FRW) always appears oe relice-Tanaka [1006.4399]

¢ Introducing higher spacetime curvature terms in the gravitational effective
action is ubiquitous (especially toward high-curvature scales) and such
terms can be constrained e.g., caron-Huot+ [2201.06602], de Rham+ [2203.06805], but often,
either the theory remains singular, either it is unstable e.g., Yoshida-Brandenberger
[1801.05070]
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A modified approach: the setup

e Let us perform a 3 + 1 splitting of the spacetime with timelike unit vector n
[g(n,n) =n-n = —1], normal to a hypersurface X with induced spatial
metric vy [y = g + n ® n]

e The metric can be written in terms of the lapse N and shift 3:
g = —Ndt? + v;;(dz’ + B*dt)(dz? + p7dt)

Nn

Figure from Gourgoulhon
e The extrinsic curvature (second fundamental form) on X and its trace are
K=Vn+n®V,n, K=V-n
e Spacetime curvature ((YRiem, “Ric, R, ...) can be fully rewritten in
terms of those quantities (K, ®R, ...)
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A modified approach: the idea and construction

Limiting Extrinsic Curvature Theory, Sakakihara-Yoshida-Takahashi-JQ [2005.10844]

e Inthe 3 + 1 splitting of the geometry, let us assume time remains smooth,
but let us try to bound spatial curvature, i.e., 3-dimensional spatial curvature
invariants rather 4-d spacetime quantities:

e We need to introduce a field (e.g., a scalar ¢ or a vector A) that defines our
spatial hypersurface (very common when Lorentz invariance is
[spontaneously] broken, e.g., in cosmology):

{V¢>
n —
A

e Let us take a vector field from here on. Then, we must enforce the
normalization A - A = —1 through an additional constraint, thus introducing
an additional Lagrange multiplier A term in the action:

d*z\/—detg \(A-A+1)
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A simple realization

Sakakihara-Yoshida-Takahashi-JQ [2005.10844]
e Let us consider a single curvature invariant, K =V -n =V - A:

1
S:/dt/deN det7(§(|K|2—K2+(3)R) +)\(A~A+1)+XK—V(X))
>

gen. rel.

e A potential with |[dV//dx| < oo ensures |K| < oo thanks to
6S dV
— =0 = K= —
ox dx
e We recognize this constraint as the Cuscuton constraint, and the theory is indeed equivalent to
the Cuscuton Afshordi-Chung-Geshnizjani [hep-th/0609150]; see my previous seminar at Fields
6S 1
—=0= A= —V
5A 2x X

= S= Sgen. rel. + /d493 \/7detg‘ <i\/*VX . VXv - V(X))

e On a cosmological background, K = 3H, so a non-singular (bouncing) universe can follow,
with stable linear inhomogeneities Boruah-Kim-Rouben-Geshnizjani [1802.06818], JQ-Yoshida [1911.06040]
9/12
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Relation to other theories

Sakakihara-Yoshida-Takahashi-JQ [2005.10844]

e Solving the constraint K = dV/dx for x = x(K) (which one can do if
d?V/dx? # 0), then with the Legendre transform

F(K) = Kx(K) = V(X(K)),

we can rewrite the action as
5= /dt/ a% Nv/dety (5 (1K = K* + ©R) + F(K))
b

e This makes it manifest that the theory modifies general relativity (changes its &2
term), yet does not introduce any additional degrees of freedom (only 2 tensor pert.)
— it is a subclass of such theories that only minimally modify gravity e.g., Lin-Mukohyama [1708.03757],
Mukohyama-Noui [1905.02000], Gao-Yao [1910.13995]

e Other theories are of the above F(K) form, including the low-energy limit of
Horava-Lifshitz gravity, a proposal for quantum gravity explicitly breaking Lorentz
invariance — the equivalence with the Cuscuton is manifest for a particular potential Afshordi
[0907.5201], Bhattacharyya+ [1612.01824], Chagoya-Tasinato [1805.12010]

e Other choices of F(K) result in the same equations as those of Loop Quantum
Cosmology or Group Field Theory, known to predict a non-singular (bouncing)
universe Chamseddine-Mukhanov [1612.05860], Bodendorfer-Schafer-Schliemann [1703.10670], Langlois+ [1703.10812],

de Cesare [1812.06171,1904.02622]
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Conclusions and discussion

e One might expect some notion of limited curvature in quantum gravity

» Can we find a consistent low-energy effective theory, which manifests
this property?

e Limiting Extrinsic Curvature Theory is a nice setup to build such theories,
especially in the context where a preferred frame is selected (e.g.,
cosmology)

e A simple realization leads to the Cuscuton, which connects with different
proposals for quantum gravity — furthermore, the theory passes several
sanity checks and has interesting phenomenology (e.g., bouncing
cosmology)

e Extensions and further pheno: one can bound more than one curvature
invariant, e.g., adding a term bounding |K|? — K?/3 enables one to limit the
growth of anisotropies in Bianchi spacetimes sakakinara-Yoshida-Takahashi-JQ [2005.10844]
— evades the BKL approach to singularities

e Future directions: observational prediction in the early universe?
non-perturbative stability (using numerical relativity)?
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Thank you for your attention!

Questions?
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