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What we know of the very early universe with certainty
Figures adapted from Planck [arXiv:1502.01582,1807.06211]

〈ζkζk〉′ = (2.10± 0.03)× 10−9︸ ︷︷ ︸
As= amplitude

(
k

0.05 Mpc−1

)−0.0351± 0.0042︸ ︷︷ ︸
ns−1= tilt

⇒ Nearly scale-invariant, Gaussian, scalar fluctuations

⇒ Currently no (statistically significant) sign of anything else!
(e.g., primordial gravitational waves, non-Gaussianities, running of the spectrum, features, etc.)

⇒ Incredibly rich and complex, yet very simple!
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How can this be explained?

linearized Einstein equations⇒

∂2
τ (zζk) +

(
c2sk

2 − ∂2
τz

z

)
zζk = 0 , z ≡ a

√
2ε

cs

τ = conformal time
a(τ) = scale factor of the universe
ε(τ) = characterizes the equation of state of the matter content
cs(τ) = sound speed
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How can this be explained?
• E.g., cs = 1, ε ≈ const., a(τ) ∼ |τ |1/(ε−1) ⇒ ∂2

τz/z = 2−ε
(ε−1)2τ2

Approximate scale invariance is found for ∂2
τz/z ≈ 2/τ2

⇒ Inflation: ε� 1 (negative pressure, approx. vacuum EoS)
⇒ Fast contraction: ε ≈ 3/2 (pressureless matter) Wands [gr-qc/9809062]

• Time-dependent ε or cs or additional fields open up many more possibilities
e.g., Hinterbichler & Khoury [1106.1428], Geshnizjani et al. [1107.1241]

E.g.:

I Slow contraction (a.k.a. ekpyrosis): ε > 3 (ultra-stiff EoS)
e.g., Lehners et al. [hep-th/0702153]

I Slow expansion (a.k.a. genesis): ε < 0 (ghost-like EoS)
e.g., Creminelli et al. [1007.0027]

• Can all be made consistent with the measured 〈ζkζk〉′

• More scenarios are also possible (e.g., ‘beyond semi-classical GR’), but let’s keep it
simple for today
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• Inflation (standard paradigm)

• Contraction (alternative)

• Slow expansion (alternative)
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Can we realistically tell them apart?
With the running of the spectral index αs, non-Gaussianities (fNL, gNL, ...),
tensor-to-scalar ratio r, tensor tilt nt, etc.?

Surely. But one can often find models that lead to closely degenerate
predictions.

Example:

single-field slow-roll inflation

ns ≈ 0.97 , αs ≈ −5× 10−4

f local
NL ≈ 0.01

r ≈ 0.01 , nt ≈ −0.001

two-field ekpyrosis (slow contraction)

ns ≈ 0.97 , log10(−αs) . −2

f local
NL ≈ 3

2
κ3

√
ε + 5 (∈ [−5, 5])

r . 0.06 , nt & 0.12

Ijjas et al. [1404.1265], Lehners & Wilson-Ewing [1507.08112],

Fertig et al. [1607.05663],

Ben-Dayan+ [1604.07899,1812.06970]→ sourced perturbations

from gauge field production
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So are there ways of discriminating between those theories,
in a model-independent way,
both theoretically and observationally?

We need to invent new approaches!

Let me propose a few avenues in that direction for the rest of this talk:

(1) Primordial quantum circuit complexity

(2) Primordial quantum transition amplitudes

(3) Primordial standard clocks
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(1) Primordial quantum complexity
• How complex are the various scenarios? If we did a quantum simulation of the early

universe, how many quantum gates would it require?

|ΨRef〉
|ΨTarget〉=Û|ΨRef 〉

−−−−−−−−−−−−−−−−→ |ΨTarget〉

• How many elementary quantum gates to construct Û? =⇒ complexity

• The general idea is that a circuit can have a continuous differential-geometry
description
⇒ optimal quantum simulation ≡ smallest number of gates ≡ geodesic in the
geometry of quantum gates
Nielsen [quant-ph/0502070], Jefferson & Myers [1707.08570], Camargo et al. [1807.07075], Chapman et al. [1810.05151],

Bhattacharyya+ [1810.02734,2001.08664,2005.10854], Lehners & JQ [2012.04911]

Jerome Quintin (AEI-Potsdam) Discriminating between theories of the very early universe 8 / 21



• Start with a Reference and a Target state, both Gaussian and with
respective frequencies ω and Ω (1-d harmonic oscillators with ‘position’ ζ):

|ΨR〉 =
(ω
π

)1/4

e−
1
2ωζ

2

, |ΨT〉 =

(
Ω

π

)1/4

e−
1
2 Ωζ2

• Example of gate that could constitute the unitary evolution (Π̂ = −i∂̂ζ ):

Q̂ ≡ e ε2 eiεζ̂Π̂ , Q̂|Ψ(ζ)〉 = e
ε
2 |Ψ(eεζ)〉

• Then Û = Q̂α yields |ΨT〉 = Û |ΨR〉 as long as 2εα = ln(Ω/ω)

• Therefore, the # of gates (the complexity) goes as

C = εα =
1

2
ln

(
Ω

ω

)
ω,Ω∈C−→ 1

2

∣∣∣∣ln(Ω

ω

)∣∣∣∣
• In cosmology, |ΨR〉 is the Bunch-Davies vacuum, and the late-time

correlator is Lehners & JQ [2012.04911]

Ω = z2

(
−i∂τ (zζ)∗

(zζ)∗
+ i

∂τz

z

)
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Quantum circuit complexity
A convenient geometry is the hyperbolic one [it naturally arises when representing the
Gaussian wavefunctions as covariance matrices, where elementary gates are elements of
Sp(2,R)] Camargo et al. [1807.07075]

Poincaré half-plane:

(x0, y0) = (0, 1) −→ (x, y) =

(
− Im Ω√

2 Re Ω
,
ω

Re Ω

)
Poincaré disk:

z = x+ iy −→ z − i
z + i

Lehners & JQ [2012.04911]

I amplification ↔ 1/Re Ω→∞ ↔ growth of 〈ζkζk〉′

I squeezing ↔ |Im Ω/Re Ω| → ∞ ↔ classicalization in the WKB sense
I complexity ↔ hyperbolic distance from the origin
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Complexity of early universe perturbations Lehners & JQ [2012.04911]

Jerome Quintin (AEI-Potsdam) Discriminating between theories of the very early universe 11 / 21



Complexity of early universe perturbations Lehners & JQ [2012.04911]

Super-horizon:

inflation (ε < 1) : ∆C '
√

2 (1 + 2ε)︸ ︷︷ ︸
≈1

∆N

slow contraction (ε > 3) : ∆C ' 2
√

2

(
ε− 3/2

ε− 1

)
︸ ︷︷ ︸

≈1

∆N

fast contraction (ε ≈ 3/2) : ∆C ' 3
√

2 ∆N

⇒ inflation acts as a ‘simple’ quantum computer compared to its alternatives

⇒ very modest dependence on specific model realizations

X Good way to differentiate theories, theoretically speaking

I How can it be used to discriminate? Interpretation of chaos? Sensitivity to
initial conditions?
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(2) Primordial quantum amplitudes Jonas, Lehners & JQ [2012.04911]

A(Φi → Φf) =

∫ Φf

Φi

DΦ e
i
~S[Φ] ~�1'

∑
saddles

N e i~Son-shell[Φi→Φf ]

Φ = {gαβ , φ,Aµ, . . .}
→ this only yields a well-defined (and non-zero) amplitude if the relevant saddle

points have finite classical on-shell action

Son-shell[Φi → Φf ] <∞
(Off-shell contributions are expected to blow up, but this is completely fine quantum

mechanically)

→ E.g., in cosmology,

Son-shell ∼
∫ t(Φf )

t(Φi)

dt aȧ2 a∼|t|1/ε∼


t
3−ε
ε

∣∣∣t(Φf )

0
inflation with ε� 1

(−t) 3−ε
ε

∣∣∣t(Φf )

−∞
contraction with ε > 1

→ Inflation appears to be fine, but contraction converges only if ε > 3 (only
slow contraction!)
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But the story is not that simple for inflation
• If inflation really goes all the way back to the big bang singularity (a = 0), instabilities

in the perturbations arise (interference among different saddle points)⇒ unviable
Di Tucci, Feldbrugge, Lehners & Turok [1906.09007]

• If inflation is eternal (potential is so flat that field stochastically jumps up the potential
and keeps inflating), action is divergent Jonas, Lehners & JQ [2102.05550]

S ∼
∫ ∞

0

dt a3 V (φ) Prob[φ is inflating at time t]︸ ︷︷ ︸
sol. to Fokker-Planck equation

→∞ if
|V,φ|
V 3/2

<
1√
2 π

→ Reminiscent of swampland criteria
e.g., Rudelius [1905.05198], Hamada, Montero, Vafa & Valenzuela [2111.00015]
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Quadratic gravity (and beyond)
• Quadratic gravity is renormalizable Stelle [PRD 1977]

Squad =

∫
d4x
√
−g

(
M2

Pl

2
R+

ω

3σ
R2 − 1

2σ
C2
µνρσ

)
→ FLRW solutions a(t) ∼ ts as t→ 0+ lead to finite amplitudes only if s > 1
⇒ accelerating out of the big bang
Lehners & Stelle [1909.01169], Jonas, Lehners & JQ [2102.05550]

→ In Bianchi I, only ‘bounded anisotropy’ solutions satisfy the principle
e.g., constant-Hubble and constant-shear solution Barrow & Hervik [gr-qc/0610013]

• For some generic higher-curvature theory (up to Riemn):

SRiemn =

∫
d4x
√
−g f(Rµνρσ)

→ a(t) ∼ ts solutions need to have s > (2n− 3)/3
⇒ If there are infinitely many (n =∞), as potentially required, no such solutions

respect the principle

X A finite cosmological amplitude principle is a good theoretical discriminator (but more
model dependent)
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(3) Primordial standard clocks

• One generally expects a wealth of heavy spectator fields in the early
universe

• These oscillating heavy fields are expected to leave oscillatory signals in the
observations

• And the frequency dependence is expected to mainly depend on the
background evolution Chen+ [1104.1323,1106.1635,1404.1536,1411.2349,1601.06228,1608.01299]
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Standard clocks

a(t) ∼ |t|1/ε −→ ∆〈ζkζk〉′

〈ζkζk〉′no oscil.
∼ k(ε−3)/2 sin

(
m/H?

ε(1− ε)
kε + phase

)

→ Oscillations superimposed on top of the nearly scale-invariant power
spectrum could tell us about ε and hence a(t) in the very early universe!
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→ Expected signals in other windows as well (3-pt function, GWs, etc.)

→ Potentially observable with next generation of telescopes!
Chen+ [1605.09364,1605.09365,1610.06559,2106.07546]

→ Explicit particle physics models have been constructed for inflation and the
corresponding signals are currently extensively studied
Chen, Namjoo & Wang [1411.2349], Braglia et al. [2106.07546,2108.10110]

and not to mention the cosmological collider program (Arkani-Hamed & Maldacena [1503.08043], Lee, Baumann & Pimentel

[1607.03735], Chen, Wang & Xianyu [1610.06597], etc.)

→ Barely any exploration of the alternatives
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First classical standard clock model in slow contraction
With Xingang Chen and Reza Ebadi

L =
R

2
− 1

2
GIJ(ΦK)∂µΦI∂

µΦJ − V (ΦK) , ΦK = (φ, χ, σ)

σ̈ + 3Hσ̇ +m2σ = 0⇒ σ(t) ∼ (−t)−3/(2ε) sin(mt+ phase)

L ⊃ σ(∂χ)2 −→ H(2)
int ∼ −a

3σ

(
ζ̇2 − (∂iζ)2

a2

)
=⇒ ∆〈ζkζk〉′

〈ζkζk〉′no oscil.

→ Exact signals currently under investigation, so stay tuned!
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Conclusions and future directions

• Very different realizations of the very early universe can degenerately
predict the same simple nearly scale-invariant primordial spectrum

• We need new ways of discriminating between theories, in the most
model-independent way:

→ quantum circuit complexity:
X nice description of the quantum-to-classical transition
X very modest model dependence
• applicability?

→ finite quantum cosmological amplitudes:
X strong theoretical constraint on allowed models
• more model dependent

→ standard clocks (heavy spectator fields):
X strong potential observational constraints on allowed models
X quite model independent
• a lot more work to be done on the alternatives
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Thank you for your attention!

I acknowledge support from the following agencies:
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