Discriminating Between Theories of the Very Early Universe

Jerome Quintin

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany

Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut

2021 CAP Virtual Congress

Cosmology: James Peebles Nobel Celebration Symposium June 8th, 2021

Big Bang Cosmology

Adapted from https://www.universetoday.com/54756/what-is-the-big-bang-theory/

The relic of the 'big bang' (thanks Peebles!)

Adapted from Planck Collaboration [arXiv:1502.01582,1807.06211]

$$\langle \zeta_k \zeta_k \rangle' = (2.10 \pm 0.03) \times 10^{-9} \left(\frac{k}{0.05 \,\mathrm{Mpc}^{-1}} \right)^{-0.0531 \pm 0.004}$$

- ⇒ Nearly scale-invariant, Gaussian, scalar fluctuations
- ⇒ Currently no (statistically significant) sign of anything else! (e.g., primordial gravitational waves, non-Gaussianities, running of the spectrum, features, etc.)
- \Rightarrow Incredibly rich and complex, yet very simple

Jerome Quintin (Max Planck Inst. Gravitational Phys.)

Discriminating between theories of the very early universe 3 / 17

How can this be explained?

ASSUME initial conditions: quantum vacuum on small scales

perturbed Einstein equations $\Rightarrow \ddot{\zeta}_k + \left(3\frac{\dot{a}}{a} + \frac{\dot{\epsilon}}{\epsilon}\right)\dot{\zeta}_k + \frac{k^2}{a^2}\zeta_k = 0$

a(t) = scale factor of the universe

 $\epsilon(t)={\rm characterizes}$ the equation of state of the matter content

- E.g., $\epsilon \approx \text{const.}$, $a(t) \sim |t|^{1/\epsilon}$
 - \Rightarrow Accelerated expansion (t > 0): $\epsilon \ll 1$ (negative pressure vacuum EoS)
 - \Rightarrow Fast contraction (t < 0): $\epsilon \approx 3/2$ (pressureless matter)
 - \Rightarrow Slow contraction (a.k.a. ekpyrosis; t < 0): $\epsilon > 3$ (ultra-stiff EoS)
- Can all be made consistent with the measured (ζ_kζ_k)'
- · A few more scenarios are also possible, but let's keep it simple for today

Jerome Quintin (Max Planck Inst. Gravitational Phys.)

Discriminating between theories of the very early universe

• Inflation (standard paradigm)

• Fast contraction (alternative)

• Slow contraction (alternative)

Images adapted from https://www.wired.com/story/what-if-the-big-bang-was-actually-a-big-bounce/

Jerome Quintin (Max Planck Inst. Gravitational Phys.)

Discriminating between theories of the very early universe

Some pros and cons

- Inflation:
 - > The universe starts with a **big bang** (geodesically incomplete)
 - The universe may be eternally inflating
 - Needs new field to drive inflation, e.g., scalar field with sufficiently flat potential
 - Hard to get such potentials in ultraviolet-complete theories
- Fast contraction:
 - ► The universe must undergo a **bounce** (geodesically complete)
 - Standard matter is sufficient
 - Somewhat unstable (to anisotropies, inhomogeneities, other matter contents, etc.)
- Slow contraction:
 - ► The universe must undergo a **bounce** (geodesically complete)
 - Originally proposed as a string theory construction
 - Generally requires more than one field
 - Very stable background

But are there ways of discriminating between those theories, in a model-independent way, both theoretically and observationally?

We need to invent new approaches!

Let me propose a few avenues in that direction for the rest of this talk:

- (1) Primordial quantum complexity
- (2) Primordial quantum amplitudes
- (3) Primordial standard clocks

(1) Primordial quantum complexity

 How complex are the various scenarios? If we did a quantum simulation of the early universe, how many quantum gates would it require?

- How many elementary quantum gates to construct \hat{U} ? \implies complexity
- The general idea is that a circuit can have a continuous differential-geometry description

 \Rightarrow optimal quantum simulation \equiv smallest number of gates \equiv geodesic in the geometry of quantum gates

Nielsen [quant-ph/0502070], Jefferson & Myers [1707.08570], Camargo+ [1807.07075], Ali+ [1810.02734], Chapman+ [1810.05151], Bhattacharyya+ [2001.08664,2005.10854], Lehners & JQ [2012.04911]

Quantum circuit complexity

• A convenient geometry is the hyperbolic one [it naturally arises when representing the Gaussian wavefunctions as covariance matrices, where elementary gates are elements of $Sp(2, \mathbb{R})$] Camargo+ [1807.07075]

Lehners & JQ, Phys. Rev. D (2021)

- amplification \leftrightarrow growth of $\langle \zeta_k \zeta_k \rangle'$
- ► squeezing ↔ classicalization in the WKB sense

Jerome Quintin (Max Planck Inst. Gravitational Phys.)

Discriminating between theories of the very early universe 9 / 17

Complexity of early universe perturbations Lehners & JQ, Phys. Rev. D (2021)

⇒ very modest dependence on specific model realizations

Jerome Quintin (Max Planck Inst. Gravitational Phys.)

Discriminating between theories of the very early universe

(2) Primordial quantum amplitudes

Jonas, Lehners & JQ, Phys. Rev. D (2021)

$$\mathcal{A}(\Phi_{\rm i} \to \Phi_{\rm f}) = \int_{\Phi_{\rm i}}^{\Phi_{\rm f}} \mathcal{D}\Phi \, e^{\frac{i}{\hbar}S[\Phi]} \simeq \sum \mathcal{N}e^{\frac{i}{\hbar}S_{\rm cl}[\Phi_{\rm i} \to \Phi_{\rm f}]} \,, \quad \Phi = \{g_{\alpha\beta}, \phi, A_{\mu}, \ldots\}$$

- $\rightarrow\,$ this only yields a well-defined amplitude if the relevant saddle points have finite classical on-shell action
- \rightarrow E.g., in cosmology,

$$S_{\text{on-shell}} \sim \int_{t(\Phi_{\text{i}})}^{t(\Phi_{\text{f}})} \mathrm{d}t \, a\dot{a}^{2} \stackrel{a \sim |t|^{1/\epsilon}}{\sim} \begin{cases} t^{\frac{3-\epsilon}{\epsilon}} \Big|_{0}^{t(\Phi_{\text{f}})} & \text{inflation with } \epsilon \ll 1\\ (-t)^{\frac{3-\epsilon}{\epsilon}} \Big|_{-\infty}^{t(\Phi_{\text{f}})} & \text{contraction with } \epsilon > 1 \end{cases}$$

 $\rightarrow\,$ Inflation appears to be fine, but contraction converges only if $\epsilon>3$ (only slow contraction!)

But the story is not that simple for inflation

- If inflation really goes all the way back to the big bang singularity (a = 0), instabilities in the perturbations arise (interference among different saddle points) \Rightarrow unviable Di Tucci *et al.* [1906.09007]
- If inflation is eternal (potential is so flat that field stochastically jumps up the potential and keeps inflating), action is divergent Jonas, Lehners & JQ [2102.05550]

→ Reminiscent of swampland criteria

(3) Primordial standard clocks

• One generally expects a wealth of heavy spectator fields in the early universe

- These oscillating heavy fields are expected to leave oscillatory signals in the observations
- And the frequency dependence is expected to mainly depend on the background evolution Chen [1104.1323]

$$a(t) \sim |t|^{1/\epsilon} \longrightarrow \frac{\Delta \langle \zeta_k \zeta_k \rangle'}{\langle \zeta_k \zeta_k \rangle'_{\text{no oscil.}}} \sim A(k,\epsilon) \sin(k^{\epsilon}) \longrightarrow \text{standard clock}$$

- \rightarrow Oscillations superimposed on top of the nearly scale-invariant power spectrum could tell us about a(t) in the very early universe!
- → Expected signals in other windows as well (3-pt function, GWs, etc.)
- → Potentially observable with next generation of telescopes!
- → Explicit particle physics models have been constructed for inflation and the corresponding signals are currently extensively studied
- → Barely any exploration of the alternatives!

First classical standard clock model in ekpyrosis

(slow contraction)

 $\rightarrow\,$ Predicted signals in the observations currently under investigation, so stay tuned!

Conclusions and future directions

- Very different realizations of the very early universe can degenerately predict the same simple nearly scale-invariant primordial spectrum
- We need new ways of discriminating between theories, in the most model-independent way:
 - \rightarrow quantum circuit complexity:
 - ✓ nice description of the quantum-to-classical transition
 - √ very modest model dependence
 - X limited applicability?
 - \rightarrow finite quantum cosmological amplitudes:
 - ✓ strong theoretical constraint on allowed models
 - X more model dependent
 - \rightarrow standard clocks (heavy spectator fields):
 - \checkmark strong potential observational constraints on allowed models
 - √ quite model independent
 - X a lot more work to be done on the alternatives!
- Other constructions of the very early universe are worth paying attention to (e.g., string gas, topological gravity, and more)

16/17

Thank you for your attention!

I acknowledge support from the following agencies:

