Cuscuton Gravity as a Classically Stable Limiting Curvature Theory

Jerome Quintin

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam

Cosmology Journal Club DAMTP, Cambridge November 19, 2019

Based on work with Daisuke Yoshida (Kobe U.)

arXiv:1911.06040

Motivation

- GR + normal matter ⇒ inevitable singularities Penrose (1965), Hawking (1967), ...
- Even inflationary cosmology (within GR) is inevitably past incomplete and often inextendible Borde & Vilenkin (1994), Border et al. (2003), Yoshida & JQ (2018), ...
- One would thus like to build a theory that is free of these singularities
 one has to go beyond classical GR

Not an easy task...

- A popular avenue: consider a generic scalar-tensor theory, e.g., Horndeski, with many free functions
- Those admit non-singular cosmological background solutions
- However, perturbations are often plagued with instabilities: ghosts
 and gradient instabilities
 indications for a no-go theorem Libanov et
 al. (2016), Kobayashi (2016), Creminelli et al. (2016), Cai et al. (2017), ...
- Very few ways of evading the no-go theorem and often at some costs
 ljjas & Steinhardt (2016,2017), Cai & Piao (2017), Cai et al. (2017), Kolevator et al. (2017), Dobre et al. (2017), Mironov et
 al. (2018,2019), Ye & Piao (2019), Banerjee et al. (2019), ...

Limiting curvature

- Different approach to singularity resolution: impose constraint equations that ensure the boundedness of curvature
 limiting curvature
- Example of implementation Mukhanov & Brandenberger (1992), Brandenberger et al. (1993)

$$\begin{split} S &= S_{\mathrm{EH}} + \int \mathrm{d}^4 x \sqrt{-g} \left[\sum_{i=1}^n \varphi_i I_i(\mathbf{Riem}, \boldsymbol{g}, \boldsymbol{\nabla}) - V(\varphi_1, ..., \varphi_n) \right] \\ \delta_{\varphi_i} S &= 0 \implies I_i = V_{,\varphi_i} \\ |V_{,\varphi_i}| &< \infty \ \forall \varphi_i \implies \text{bounded curvature} \end{split}$$

• Concrete model (e.g., n=2)

$$I_1 = \sqrt{12R_{\mu\nu}R^{\mu\nu} - 3R^2} \stackrel{\mathrm{FRW}}{\propto} \dot{H} , \qquad I_2 = R + I_1 \stackrel{\mathrm{FRW}}{\propto} H^2$$

 — non-singular background cosmology, but severe instabilities Yoshida,
 JQ et al. (2017)

 Another implementation of limiting curvature: mimetic gravity chamseddine & Mukhanov (2013,2017), ...

$$S = S_{EH} + \int d^4x \sqrt{-g} \left[\lambda (\partial_\mu \phi \partial^\mu \phi + 1) + \chi \Box \phi - V(\chi) \right]$$

$$\delta_\lambda S = 0 \implies \partial_\mu \phi \partial^\mu \phi = -1$$

$$\delta_\chi S = 0 \implies \Box \phi = V_{,\chi}$$

- E.g., $\phi=t \implies \Box \phi=3H$, so bounding $V_{,\chi}$ ensures H does not blow up
- Yet, mimetic gravity suffers from (gradient) instabilities lijas et al. (2016), Firouzjahi et al. (2017), Landois et al. (2019), ...

Cuscuton gravity

- Setup: GR + non-dynamical scalar field ϕ on cosmological background
- Subclass of 'minimally-modified gravity' (modified gravity with only 2 d.o.f., i.e., the 2 tensor modes of GR) Lin & Mukohyama (2017), Carballo-Rubio et al. (2018), Aoki et al. (2018,2019), Lin (2019), Mukohyama & Noui (2019)
- Original implementation: start with k-essence theory Afshordi et al. (2007)

$$\begin{split} S &= S_{\rm EH} + \int \mathrm{d}^4 x \sqrt{-g} P(X,\phi) \,, \qquad X \equiv -\frac{1}{2} \partial_\mu \phi \partial^\mu \phi \\ \delta_\phi S &= 0 \stackrel{\rm FRW}{\Longrightarrow} (P_{,X} + 2XP_{,XX}) \ddot{\phi} + 3HP_{,X} \dot{\phi} + P_{,X\phi} \dot{\phi}^2 - P_{,\phi} = 0 \end{split}$$

• Requiring $P_{,X} + 2XP_{,XX} = 0$ sets

$$P(X,\phi) = c_1(\phi)\sqrt{|X|} + c_2(\phi)$$

• Rescaling ϕ , we can write

$$\mathcal{L}_{\text{cuscuton}} = \pm M_L^2 \sqrt{2X} - V(\phi), \quad \partial_{\mu} \phi \text{ timelike}$$

EOM becomes a constraint equation:

$$\mp \mathrm{sgn}(\dot{\phi})3M_L^2H = V_{,\phi}$$

→ limiting curvature

$$M_L^2 K = V_{,\phi}, \qquad K = \nabla_{\mu} u^{\mu}, \qquad u_{\mu} = \pm \frac{\partial_{\mu} \phi}{\sqrt{2X}}$$

Incompressible perfect fluid

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu} , \quad \rho = 2XP_{,X} - P = V , \quad p = P$$

$$c_s^2 = \frac{p_{,X}}{\rho_{,X}} = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}} \to \infty$$

- Other interesting properties:
 - forms no caustics de Rham & Motohashi (2017)
 - geometrical interpretation Chagoya & Tasinato (2017)
 - new symmetries Pajer & Stefanyszyn (2019), Grall et al. (2019)
 - and more

Fluctuations do not propagate:

$$\delta g_{ij} = -2a^2 \zeta \delta_{ij} \implies S_{\text{scalar}}^{(2)} = \int dt d^3 \mathbf{x} \, a^3 \left(\mathcal{G}_S \dot{\zeta}^2 - \frac{\mathcal{F}_S}{a^2} (\vec{\nabla} \zeta)^2 \right) \,,$$
where
$$\mathcal{G}_S = \frac{X}{H^2} (P_{,X} + 2XP_{,XX}) = 0 \,, \qquad \mathcal{F}_S = -M_{\text{pl}}^2 \dot{H} / H^2 \,;$$

$$S_{\text{scalar}}^{(2)} = \int dt d^3 \mathbf{x} \, a^3 \mathcal{G}_S \left(\dot{\zeta}^2 - \frac{c_S^2}{a^2} (\vec{\nabla} \zeta)^2 \right) \,, \qquad c_S^2 = \frac{\mathcal{F}_S}{\mathcal{G}_S} \to \infty$$

- no-go theorem in Horndeski theory does not apply
- But what happens if H=0, e.g., through a bounce?

Cuscuton gravity with matter

Consider the addition of a massless scalar field

$$\mathcal{L} = \mathcal{L}_{\mathrm{EH}} \pm M_L^2 \sqrt{2X} - V(\phi) - \frac{1}{2} \partial_\mu \chi \partial^\mu \chi$$

$$\stackrel{\text{FRW}}{\Longrightarrow} 3M_{\text{pl}}^{2}H^{2} = \frac{1}{2}\dot{\chi}^{2} + V(\phi), \quad 2M_{\text{pl}}^{2}\dot{H} = -\dot{\chi}^{2} \mp M_{L}^{2}|\dot{\phi}|$$

- Choose '—' sign in $\mathcal{L}_{\mathrm{cuscuton}}$
- NEC violation:

$$M_L^2|\dot{\phi}|>\dot{\chi}^2\implies 2M_{\rm pl}^2\dot{H}=-\dot{\chi}^2+M_L^2|\dot{\phi}|>0$$

Requirement for a bounce:

$$\mathrm{sgn}(\dot{\phi})3M_L^2H = V_{,\phi} \implies 3M_L^2\dot{H} = V_{,\phi\phi}|\dot{\phi}|$$

$$V_{,\phi\phi} > 0 \implies \dot{H} > 0$$

Cosmological perturbations

• Consider the comoving gauge w.r.t. ϕ , so $\delta\phi=0$, but $\chi(t,\mathbf{x})=\chi(t)+\delta\chi(t,\mathbf{x})$ and

$$ds^{2} = -(1+2\Phi)dt^{2} + 2a\partial_{i}Bdx^{i}dt + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$$

• Perturbed Hamiltonian and momentum constraints in Fourier space (setting $M_{\rm pl}=1$):

$$(\dot{\chi}^{2}/2 - 3H^{2})\Phi_{k} + \mathbf{H}(k/a)^{2}B_{k} + 3H\dot{\Psi}_{k} + (k/a)^{2}\Psi_{k} - \dot{\chi}\delta\dot{\chi}_{k} = 0$$

$$2\mathbf{H}\Phi_{k} - 2\dot{\Psi}_{k} - \dot{\chi}\delta\chi_{k} = 0$$

- \longrightarrow need to divide by ${\color{red} H}$ (in particular when H=0) to eliminate Φ_k and B_k
 - ---- potential divergences

After simplification,

$$S_{\text{scalar}}^{(2)} = \int dt d^3 \mathbf{k} \, az^2 \left(\dot{\zeta}_k^2 - c_s^2 \frac{k^2}{a^2} \zeta_k^2 \right) , \qquad \zeta_k = -\Psi_k - \frac{H}{\dot{\chi}} \delta \chi_k ,$$

where

$$z^{2} = a^{2} \frac{\dot{\chi}^{2}(k^{2}/a^{2} + 3\dot{\chi}^{2}/2)}{(k/a)^{2}H^{2} + \dot{\chi}^{2}(3H^{2} + \underbrace{\dot{H} + \dot{\chi}^{2}/2}_{=M_{L}^{2}|\dot{\phi}|/2}) > 0, \quad \checkmark$$

$$c_{\rm s}^2 = \frac{H^4 k^4 / a^4 + A_2 k^2 / a^2 + A_0}{H^4 k^4 / a^4 + B_2 k^2 / a^2 + B_0} \xrightarrow{k \to \infty} 1 > 0, \quad \checkmark$$

with

$$\begin{split} A_2 &\equiv \dot{\chi}^2/2 \left(12 H^2 + 3 \dot{H} + \dot{\chi}^2/2\right) + 2 \dot{H}^2 - H \ddot{H} \\ A_0 &\equiv \left(\dot{\chi}^2/2\right)^2 \left(15 H^2 + \dot{H} - \dot{\chi}^2/2\right) - \dot{\chi}^2/2 \left(12 H^2 \dot{H} - 2 \dot{H}^2 + 3 H \ddot{H}\right) \\ B_2 &\equiv \dot{\chi}^2/2 \left(6 H^2 + \dot{H} + \dot{\chi}^2/2\right) \;,\; B_0 &\equiv 3 \left(\dot{\chi}^2/2\right)^2 \left(3 H^2 + \dot{H} + \dot{\chi}^2/2\right) \end{split}$$

Note, however,

$$z^2 \stackrel{k \to \infty}{\longrightarrow} a^2 \dot{v}^2 / H^2 \stackrel{H \to 0}{\longrightarrow} \infty$$

Switch gauge

• Spatially flat ($\Psi^S = 0$):

$$\begin{split} &\Phi_k^S = -\frac{d}{dt}(\zeta_k/H) + \mathcal{O}(H^0) \,, \ aB_k^S = \zeta_k/H + \mathcal{O}(H^0) \,, \\ &\delta\chi_k^S = -\dot{\chi}\zeta_k/H + \mathcal{O}(H^0) \,, \ \delta\phi_k^S = -\dot{\phi}\zeta_k/H + \mathcal{O}(H^0) \\ &\Longrightarrow \text{ill defined at } H = 0 \end{split}$$

• Back to comoving gauge w.r.t. ϕ ($\delta \phi^{\phi} = 0$):

$$\begin{split} &\Phi_k^\phi = \Phi_k^S - \frac{d}{dt} (\delta \phi_k^S/\dot{\phi}) = -\frac{4}{1+3\dot{\chi}^2 a^2/2k^2} \zeta_k + \mathcal{O}(H) \\ &a B_k^\phi = a B_k^S + \delta \phi_k^S/\dot{\phi} = -\frac{3a^2\dot{\chi}^2}{M_L^2 k^2 \dot{\phi}} \dot{\zeta}_k + \mathcal{O}(H) \\ &\Psi_k^\phi = H \delta \phi_k^S/\dot{\phi} = -\zeta_k + \mathcal{O}(H) \\ &\delta \chi_k^\phi = \delta \chi_k^S - \dot{\chi} \delta \phi_k^S/\dot{\phi} = -\frac{2\dot{\chi}}{M_L^2 \dot{\phi}} \dot{\zeta}_k + \mathcal{O}(H) \end{split}$$

- $\bullet \implies$ divergences exactly cancel out to yield well-defined perturbations at H=0
 - \implies valid perturbed action $\mathcal{L}_{s}^{(2)} = az^{2}(\dot{\zeta}_{k}^{2} c_{s}^{2}k^{2}\zeta_{k}^{2}/a^{2})$
- Comoving gauge w.r.t. χ ($\delta \chi^{\chi} = 0$):

$$\begin{split} &\Phi_k^\chi = \Phi_k^S - \frac{d}{dt} \left(\frac{\delta \chi_k^S}{\dot{\chi}} \right) = -\frac{d}{dt} \left(\frac{\zeta_k}{H} \right) - \frac{d}{dt} \left(\frac{\zeta_k}{H} \right) + \mathcal{O}(H^0) \\ &aB_k^\chi = aB_k^S + \frac{\delta \chi_k^S}{\dot{\chi}} = \frac{\zeta_k}{H} + \left(-\frac{\zeta_k}{H} \right) + \mathcal{O}(H^0) \\ &\Psi_k^\chi = H \frac{\delta \chi_k^S}{\dot{\chi}} = \mathcal{H} \left(-\frac{\zeta_k}{H} \right) + \mathcal{O}(H^0) \\ &\delta \phi_k^\chi = \delta \phi_k^S - \dot{\phi} \frac{\delta \chi_k^S}{\dot{\chi}} = -\frac{\dot{\phi}}{H} \zeta_k - \dot{\phi} \left(\frac{\zeta_k}{H} \right) + \mathcal{O}(H^0) \\ &\longrightarrow \text{all finite at } H = 0 \end{split}$$

• Newtonian gauge ($B^N=0$):

$$\begin{split} &\Phi_k^N = \Phi_k^S + \frac{d}{dt}(aB_k^S) = -\frac{d}{dt}\left(\frac{\zeta_k}{H}\right) + \frac{d}{dt}\left(\frac{\zeta_k}{H}\right) + \mathcal{O}(H^0) \\ &\Psi_k^N = -aHB_k^S = -H\frac{\zeta_k}{H} + \mathcal{O}(H^0) \\ &\delta\phi_k^N = \delta\phi_k^S + a\dot{\phi}B_k^S = -\dot{\phi}\frac{\zeta_k}{H} + \dot{\phi}\frac{\zeta_k}{H} + \mathcal{O}(H^0) \\ &\delta\chi_k^N = \delta\chi_k^S + a\dot{\chi}B_k^S = -\dot{\chi}\frac{\zeta_k}{H} + \dot{\chi}\frac{\zeta_k}{H} + \mathcal{O}(H^0) \\ &\longrightarrow \text{all finite at } H = 0 \end{split}$$

So what really goes on close to H = 0?

• Take the limit $H \to 0$ first and then $k \to \infty$:

$$S_{\rm s}^{(2)} \stackrel{H\approx 0}{\simeq} \frac{4}{M_L^2} \int \mathrm{d}t \mathrm{d}^3 \mathbf{k} \, \frac{ak^2}{|\dot{\phi}|} \left[\dot{\zeta}_k^2 - \left(1 + \frac{\dot{H}}{\dot{\chi}^2} \right) \frac{k^2}{a^2} \zeta_k^2 \right] \,, \qquad (\mathrm{UV})$$

- —> confirms that there is no divergence
- Sound speed when $H \approx 0$ (reinserting $M_{\rm pl}$, defining $m^2 \equiv V_{\phi\phi}|_{\rm bounce}$):

$$\begin{split} c_{\mathrm{s}}^2 &\overset{\frac{k}{a} \ll \mathcal{O}(\dot{\chi})}{\sim} - \frac{1}{3} + \frac{4m^2 M_{\mathrm{pl}}^2}{3(3M_L^4 - 2m^2 M_{\mathrm{pl}}^2)} \in (0,1] \quad \mathrm{if} \quad \frac{1}{2} < \frac{m^2 M_{\mathrm{pl}}^2}{M_L^4} \leq 1 \\ c_{\mathrm{s}}^2 &\overset{\frac{k}{a} \gtrsim \mathcal{O}(\dot{\chi})}{\sim} 1 + \frac{4m^2 M_{\mathrm{pl}}^2}{3M_L^4 - 2m^2 M_{\mathrm{pl}}^2} \sim \mathcal{O}(1-10) \end{split}$$

• \longrightarrow superluminality near $H \approx 0$ for mid- to large-k modes

Evolution of ζ_k in the IR in a bounce phase

- The evolution of ζ_k in the IR through a bounce phase links perturbations from a contracting phase (scale invariant?) to the CMB
- For $k \to 0$,

$$\ddot{\zeta} + \left(\frac{\dot{a}}{a} + 2\frac{\dot{z}}{z}\right)\dot{\zeta} = 0 \implies \zeta = \text{const. and } \zeta(t) \propto \int^t \frac{\mathrm{d}t}{az^2}$$

- Can ζ undergo significant amplification? Generally not the case, but if so, possibly important non-Gaussianities generated Battarra et al. (2014), JQ et al. (2015)
- In general, if $z \propto a$ (constant EoS), then $\Delta \zeta < \dot{\zeta}_i (a_i/a_B)^3 \Delta t$
- Here,

$$z^2 \stackrel{k \to 0}{\simeq} \frac{3a^2 \dot{\chi}^2 / M_{\rm pl}^2}{3H^2 + \dot{H} + \dot{\chi}^2 / 2M_{\rm pl}^2} \sim a^2$$

• One finds $\Delta \zeta < \dot{\zeta}_i (a_i/a_B)^3 \mathcal{E} \Delta t$ with

$$\mathcal{E} = \frac{1 + 3\left(1 - \frac{3}{2}\frac{M_L^4}{m^2M_{\rm pl}^2}\right)\left(\frac{a_i}{a_B}\right)^3\left(\frac{H_i^2}{\dot{H}_B} + \frac{1}{3}\right)}{1 + 3\left(1 - \frac{3}{2}\frac{M_L^4}{m^2M_{\rm pl}^2}\right)\left(\frac{a_i}{a_B}\right)^6\frac{H_i^2}{\dot{H}_B}}$$

Recall

$$1 - \frac{3}{2} \frac{M_L^4}{m^2 M_{\rm pl}^2} \sim \mathcal{O}(1)$$
, so $\mathcal{E} \gg 1$ is impossible

• \longrightarrow large wavelength curvature perturbations passing through a bounce cannot receive more amplification than $\mathcal{O}(\dot{\zeta}_i(a_i/a_B)^3\Delta t)$

Take-home messages

- Cuscuton gravity is a limiting curvature theory (bounds the extrinsic curvature)
- One can resolve cosmological singularities
- Cosmological perturbations are stable: no ghost and no gradient instability
- Sound speed becomes superluminal, only in the UV and near the bounce
- Curvature perturbations remain constant in the IR through a bounce
- Spatially-flat gauge ill defined at H=0
- Divergences at H=0 cancel out in other gauges
- Conclusions transpose to extended cuscuton model (see additional slides)

Future directions

- Strong coupling problem? de Rham & Melville (2017)
 Non-Gaussianities? JQ et al. (2015)
- Quantization and UV completion?
- New generalized limiting curvature? Instead of

$$\mathcal{L}_{\lim} = \sum_{i=1}^{n} \varphi_i I_i(\mathbf{Riem}, \boldsymbol{g}, \boldsymbol{\nabla}) - V(\varphi_1, ..., \varphi_n)$$

consider

$$\mathcal{L}_{\lim} = \sum_{i=1}^{n} \varphi_{i} I_{i}(\boldsymbol{K}, \boldsymbol{h}, \boldsymbol{D}) - V(\varphi_{1}, ..., \varphi_{n})$$

• Cuscuton ≡ vector mimetic?

Acknowledgments

Thank you for your attention!

I acknowledge support from the following agencies:

Additional slides

Example of bouncing solution

• Let $\phi = 0$ correspond to the bounce point. Then consider

$$\begin{split} V(\phi) &\simeq V_0 + \frac{1}{2} m^2 \phi^2 \,, \qquad m^2 = V_{,\phi\phi}(\phi = 0) > 0 \\ &\stackrel{\rm EOM}{\Longrightarrow} \phi \simeq \frac{3 M_L^2}{m^2} H \,, \qquad 3 \tilde{M}^2 H^2 \simeq \frac{1}{2} \dot{\chi}^2 + V_0 \,, \qquad 2 \tilde{M}^2 \dot{H} \simeq - \dot{\chi}^2 \\ V_0 &< 0 \,, \qquad \tilde{M}^2 \equiv M_{\rm pl}^2 \left(1 - \frac{3}{2} \frac{M_L^4}{m^2 M_{\rm pl}^2} \right) < 0 \implies \frac{m^2 M_{\rm pl}^2}{M_L^4} < \frac{3}{2} \end{split}$$

Taylor series solution:

$$a(t) \simeq a_0 \left(1 + \frac{V_0}{2\tilde{M}^2} t^2 \right) \,, \quad H(t) \simeq \frac{V_0}{\tilde{M}^2} t \,, \quad \dot{H} \simeq \frac{V_0}{\tilde{M}^2} \label{eq:alpha}$$

• For full solution, see Boruah et al. (2018)

Extended cuscuton

- Rather than starting with $P(X,\phi)$, start with Horndeski or even beyond-Horndeski theory, and impose $_{\text{Jyonaga et al. (2018)}}$
 - 1 the background EOM to be at most a first-order constraint equation
 - 2 and the kinetic term of scalar perturbations to vanish
 - → extended cuscuton ⊃ original cuscuton
- Alternatively, in the ADM formalism, one can construct a Hamiltonian, satisfying the appropriate conditions for the theory to propagate at most 2 gravitational d.o.f. and remaining invariant under 3-D diffeomorphisms (but possibly breaking time diffeomorphism invariance) Mukohyama & Noui (2019)
 - → minimally-modified gravity ⊃ extended cuscuton

• As an example, consider the following:

$$S = S_{\rm EH} + \int \mathrm{d}^4 x \sqrt{-g} \left(-M_L^2 \sqrt{2X} - V(\phi) - \frac{1}{2} \partial_\mu \chi \partial^\mu \chi \right)$$
$$+ \int \mathrm{d}^4 x \sqrt{-g} \lambda \left[-\frac{3\lambda}{M_{\rm pl}^2} (2X) + \ln \left(\frac{2X}{\Lambda^4} \right) \Box \phi \right]$$

• FRW (pick $\dot{\phi} > 0$):

$$3M_{\rm pl}^2\Theta^2 = \frac{1}{2}\dot{\chi}^2 + V(\phi)$$
$$2M_{\rm pl}^2\dot{\Theta} = -\dot{\chi}^2 + (M_L^2 + 6\lambda\Theta)\dot{\phi}$$
$$3M_L^2\Theta = V_{,\phi} - \frac{6\lambda}{M_{\rm pl}^2}V(\phi)$$

where

$$\Theta \equiv H + \frac{\lambda}{M_{\rm pl}^2} \dot{\phi}$$

Cosmological perturbations

• Consider the spatially-flat gauge. The solution to the set of perturbed Hamiltonian and momentum constraints read ($M_{
m pl}=1$)

$$\begin{split} \Phi^S &= \frac{1}{2\Theta} \left(\dot{\chi} \delta \chi^S - (M_L^2 + 6\lambda\Theta) \delta \phi^S + 2\lambda \dot{\delta \phi}^S \right) \,, \\ aB^S &= -\frac{\lambda}{\Theta} \delta \phi^S + \frac{a^2}{2k^2\Theta^2} \Big[\dot{\chi} \Big(\big(3\Theta^2 - \frac{\dot{\chi}^2}{2} \big) \delta \chi^S + \Theta \dot{\delta \chi}^S \Big) \\ &+ \frac{\dot{\chi}^2}{2} \left(M_L^2 \delta \phi^S - 2\lambda \dot{\delta \phi}^S \right) \Big] \end{split}$$

 \longrightarrow potentially dangerous when $\Theta=0$

With

$$\zeta \equiv -\frac{\Theta}{\dot{\chi}}\delta\chi^S + \lambda\delta\phi^S,$$

one finds

$$S_{\rm s}^{(2)} = \frac{1}{2} \int {\rm d}t {\rm d}^3 {\bf k} \, a z^2 \left(\dot{\zeta}_k^2 - c_{\rm s}^2 \frac{k^2}{a^2} \zeta_k^2 \right)$$

where

$$\begin{split} z^2 &= \frac{a^2 \dot{\chi}^2}{\Theta^2 + \frac{M_L^4 \dot{\chi}^2}{(M_L^2 + 6\lambda\Theta) \left((M_L^2 + 8\lambda\Theta) k^2 / a^2 + 3M_L^2 \dot{\chi}^2 \right)}} > 0 \,, \\ c_s^2 &= \frac{\tilde{A}_4 (k/a)^4 + \tilde{A}_2 (k/a)^2 + \tilde{A}_0}{\tilde{B}_4 (k/a)^4 + \tilde{B}_2 (k/a)^2 + \tilde{B}_0} = 1 + \mathcal{O}\left(\frac{a^2}{k^2}\right) > 0 \end{split}$$

What happens when $\Theta = 0$?

Apparent divergences actually exactly cancel out!

$$\begin{split} \delta\phi^S &= \frac{\zeta}{\lambda} + \mathcal{O}(\Theta) \\ \Longrightarrow & \delta\chi^S = -\frac{\dot{\chi}}{\Theta}\zeta + \lambda\frac{\dot{\chi}}{\Theta}\delta\phi^S = \mathcal{O}(\Theta^0) \\ &= \frac{\dot{\chi}}{2\lambda(\dot{\chi}^2/2 + \dot{\Theta})}(M_L^2\zeta - 2\lambda\dot{\zeta}) + \mathcal{O}(\Theta) \end{split}$$

Similarly,

$$\Phi^S = \mathcal{O}(\Theta^0)$$
 and $aB^S = \mathcal{O}(\Theta^0)$

Sound speed near the bounce

