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How can we avoid a singularity?
@ GR + effective matter satisfying the null energy condition (NEC)
= inevitable singularities

@ Even inflationary cosmology (within GR) is inevitably past incomplete and

often inextendible

@ Singularity resolution, before inflation or in alternatives
— need to violate the NEC, with e.g.:
» quantum fields
» modified gravity
» full quantum gravity
@ Why is this nottoo crazy? E.g.,
» traversable wormholes
» ‘averaged’ energy conditions, e.g.

o)
KLV —
<ﬂwk k >T > GN’T2
»> o’ corrections in string theory
» minimal fundamental length in quantum gravity
» etc.
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How hard can it be?

@ It's kind of difficult...

@ A popular avenue: consider a generic scalar-tensor theory, e.g.,
Horndeski, with many free functions — those admit non-singular
cosmological background solutions

@ However, perturbations are often plagued with ghosts and gradient
instabilities — indications of a no-go theorem

@ Very few ways of evading the no-go theorem and often at some costs,
e.g., strong coupling issues
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Different approach to singularity resolution

@ Impose constraint equations that ensure the boundedness of
curvature
— limiting curvature

@ Example of implementation

S = Sgn + /d%,ﬁ—g

0, 8=0 = 7, =0,V
|0y, V| < 00 Vx; = bounded curvature Z;

Z xiZi(Riem, g, V) — V(x1, .-, Xn)

@ Concrete model (e.g., n = 2)

9 FLRW FLRW

Ty = /12R, R — 3R i, —R+1, "R 12

— non-singular background cosmology, but severe instabilities
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@ Another implementation of limiting curvature: mimetic gravity

sstH+/d4xr[ (0,606 + 1) + x0 — V(x)]

S =0 = 8,001 = —
0,S=0 = ¢ =0V — Xsol = x(0¢)
f(D(b) = XSOIDQ5 - V(Xsol) — £¢ = )‘(auﬁéaugﬁ + 1) + f(D(b)

@ E.g.inFLRW, ¢ =t — [¢ = 3H, so bounding 9,V ensures H
does not blow up

@ Yet, mimetic gravity suffers from (gradient) instabilities

@ Also, anisotropies can still blow up beyond the FLRW approximation
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Cuscuton gravity

@ Setup: GR + non-dynamical scalar field ¢ on cosmological
background

@ Original implementation: start with k-essence theory

S = Sgn + / d*z /=gP(X,¢), X= —%ama%
555 =0 (Py +2XPxx)$+3HPxd+ Pxyd>— Py =0
@ Requiring P x + 2X P yxx = 0 sets
P(X,9) = c1(®)VX + c2(9)
@ Rescaling ¢, we can write

Lcuscuton = :l:MIQ, V2X — V(d)) ) QL(b timelike
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@ EOM becomes a constraint equation:
Tsgn(¢)3MEIH = 0,V
— limiting extrinsic curvature

0
J[%]Xy = 0{;‘)‘/7 K= VM’LL'U’, u“ —E M(Zs

— non-singular bouncing models
@ Cuscuton fluctuations do not propagate:
5 = [ Eadta® (62 - H%e7)
a

X g
Q:ﬁ(RX—s—QXRXX):(), F=-M3H/H?
@ Interesting properties:

» forms no caustics .
» geometrical interpretation
» new symmetries
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New unifying approach: limiting extrinsic curvature

S = Sgn +/ dgﬂﬁ/dth—’Y [ZXiIi(K,%D) — VX1, Xn)
e i=1

@ Characterize the foliation 3, with unit normal vector n* by a new field:
_— {—quﬁ with V,¢VF¢ = —1
) A, with A4, A* = —1
@ One extrinsic curvature invariant, 7, = K = V#n, = 3H (FLRW):
L= Lgu+ ANVuoV*o+1) — xV*V 0 — V(x) — mimetic
L= Lgu + XA, A" + 1)+ xVHA, — V(x) — cuscuton
@ Mimetic: Legendre transformation f(O¢) = —xO¢ — V(x)

@ Cuscuton: EOM A4, = V,,x/2\ = X = +(-V,xV#x)/?/2 and
A, =1V, x/vV-V.xV¥x, so

L =Lgu £/ —VMXV“X = V(X)
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Difference between mimetic gravity and the cuscuton

@ Cuscuton A, EOM:
1
20, -V, x=0 = A= —§AMV“X
@ Mimetic ¢ EOM:
1
Vu(@AVHe+VEY) =0 = X = §VH¢(V“X+U“), with V,U* =0

® INFLRW: V,U* =U° +3HU? =0 = U’ xa™®
and p, < U% o a3 = dust (mimetic dark matter)

@ Cuscuton has one fewer d.o.f. than mimetic = often more stable
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Example: cuscuton with matter

1
L= Lgu — M}\/—0,00¢ — V(¢) — 58;0(5“)(

FLRW 3M} 3 M}
2M2 H= Vo < oL — H
( V> 0= Y Ve >0

@ No ghost and no gradient instability
@ Interesting behaviour near H = 0 (bounce):

Sscalar - M2 /d kdtm [Ck < +F ? k

. . 2 . .
° Defmmg m- = Voo‘h()un(:e-

ko Am2 M2 n? M2
ng a,<S(X) _1 i pl c (0,1] 4 1 < ! pl <1
3" 3(3MJ — 2m2M3) 2 > M?
E>0(x) 4m> M3,

2
E T aaE —amangz, ~ O 10
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Sound speed

logyo(k/Mjp)

-20

("] Cg > 1, but causality remains fine sruneion [g-qo0607055),

Babichev, Mukhanov, Vikman [0708.0561], de Rham & Tolley [2007.01847]
@ Safe from strong coupling?
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Other application: bounded anisotropies
@ Let’'s come back to

i=1

and consider Z; = K% and 7, = K", K", — +K*
@ With n, = A, (cuscuton-like)

1
L2 x1(V*A,)? + x2 <V“AVV”AM - 3(V“AM)2) —Vix1, x2)
@ In a Bianchi | spacetime
ds? = —dt® + a? (62’8++2\/§5— da? + 2P+—2V3p- dy? + e*4ﬁ+dz2>
we then have Z; = 9H? = 9,,V and
I, =62=6 (Bi + ﬁ%) = 0y, V — can bound anisotropies
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Toy model
@ Consider vacuum. Anisotropy EOM:

3

d .
T [ag(l +2x2)B+| =0 = pani X »? = W

dt

@ pani — const. as y2 ~ a~° at early times

@ E.g.: V(x1,x2) = p?(x1 — tanh x1 + Y2 — tanh x3)

— H? — ;?/9 and X2 — 12 /6 at early times, GR at late times

3

d82 taéoo —dt2 + ZGQHit(dxi)2
=1
1 1

Ho=ty= (g% ) #= (g7 5 )n
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Perturbations
@ Only 2 d.o.f. (like the polarization states of GWs in FLRW)

@ Consider 3_ = 0 (so B4 = B) and k;dz* = kydy + k.dz by rotational
symmetry

@ Vector perturbations:

0 OF 0 0
* 0 —a%e®Po,hy a267466yh %
dgu = |4 . 0 0 . 8A, = (0,64,,0,0)
0 = 0 0
2 2 28252
Eg) = %kzaise_‘wk\ + 2x2) [}‘zx,—k)}x,k = <H ‘ ]j\yaz + 36 :sz o'2> hx.—khx,k]

@ No ghost and no gradient instability as long as
1 +2x2 >0

V' x2 > 0in the example earlier (x2 — 0 in the late-time, GR limit)
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@ Scalar perturbations:

—29 0 a(8yB +¢€289,5)  a(0,B — e *9,S)
s _ —a2(85 +e8802)h 0 0
G = * 0 a?e%P92h —a?8y0;h
* 0 * a2676B8§h+

0A, = (0A0,0,0,0A,5A.), OA, Ox1, OXx2

@ _ M 54 o K2
LY = — @ E*(1+2x2) |G(ky, kz)hy xhy —x — mh%k/u’_k

v Gradient instabilities are avoided when 1 + 25 > 0

X G(ky,k-) > 0onlyif k,/k. ~ O(0.1 — 10); ghost mode otherwise
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So what have we learned

@ Wide class of spatially-covariant theories (unifying framework for
scalar-tensor theories of gravity)

@ A subclass of those can be nicely written as limiting extrinsic
curvature theories

@ Mimetic gravity and the Cuscuton are such theories

@ Those admit non-singular FLRW and even Bianchi | cosmologies
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So what have we learned

@ Cuscuton = fully stable (classical, linear); evades the no-go!

@ c2 ~ 1, but superluminality close to the bounce; is it a valid EFT?

@ Generalizes to the extended cuscuton — stable bounce
(additional slides)

@ We are in order to understand the evolution of cosmological
perturbations through a bounce
— upper bound on the growth of IR perturbations
(additional slides)

@ Non-singular Bianchi | toy model in vacuum

@ Not fully stable; can it be improved?
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Additional slides

Jerome Quintin (AEI Potsdam) Limiting curvature in the very early universe [1911.06040,2005.10844] 20/19



Extended cuscuton

@ Rather than starting with P(X, ¢), start with Horndeski or even
beyond-Horndeski theory, and impose
© the background EOM to be at most a first-order constraint equation
® and the kinetic term of scalar perturbations to vanish

— extended cuscuton D original cuscuton

@ Alternatively, in the ADM formalism, one can construct a Hamiltonian,
satisfying the appropriate conditions for the theory to propagate at
most 2 gravitational d.o.f. and remaining invariant under 3-D
diffeomorphisms (but possibly breaking time diffeomorphism
invariance)

— minimally-modified gravity D extended cuscuton
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@ As an example, consider the following:

SZSEH+/d4x\/Tg( M3V/2X — V()—uxﬁ“)

+/d4m\/jg)\[ ]\?});(QX)JrI <2A)§>D¢

@ FLRW (pick ¢ > 0):

3M50% = > x + V(9)
2M20 = —x* + (M} + 6)0)d
6
3ME® =Vy— —V(8)
M2
where
©=H+ —qﬁ
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Cosmological perturbations
@ With (spatially-flat gauge)

(= —25;&‘ + A3

one finds 2
s =1 [anaras? (3 - 254)
where
Z2 _ 2>'C2 -0 v
) M4 X ( +@)

(M2+6)0) ((M2 +8>\6)k2 a2+3M?2 %)

R L 2
S = Ba(kja)t + Balk/a)? + Bo +O<W>>O ’
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Cuscuton gravity with matter

@ Consider the addition of a massless scalar field

y 1
L = LpptMEV2X = V(6)—50x0"x

FRW 1. c . D ar20
= BMRH? = 03 +V(9), 2M{H = —*FMi|d|

@ Choose ‘—’ sign in Lcuscuton
@ NEC violation:

ME|9| > %> = 2MYH = —X* + M{|g| > 0
@ Requirement for a bounce:

sgn(@)3MPH = Vg = 3M7H = V4|d|
V7¢¢ >0 = H >0
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Cosmological perturbations

@ Consider the comoving gauge w.r.t. ¢, so é¢ = 0, but
x(t,x) = x(t) + 0x(t,x) and

ds® = —(1 + 2®)dt* + 2a0; Bdz'dt + a*(1 — 2¥)d;;dz’dx?

@ Perturbed Hamiltonian and momentum constraints in Fourier space
(setting M, = 1):

(X*/2 — 3H?)®, + H(k/a)’ By + 3H ¥y, + (k/a)* Ty, — X6Xk =0
2H Py, — 20y, — oy, =0

@ — need to divide by H (in particular when H = 0) to eliminate &,
and By
— potential divergences
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@ After simplification,

: H
Ss(ze)ﬂar = /d3kdt az’ <Ck - C <k> ) G =¥ — ;5)(1“
where
2 X3(k2/a® + 352 /2)
(k/a)2H? + x2(3H2 + H + x*/2)/2
W
=M3|¢|/2
47.4 7 4 272
S:Hk/a +A2k/a +A0k;2>01>0, %
H4k4/a4 + ngg/aQ + By

>0, V

C

with
Ay =5%/2 (12H? + 30 +X%/2) + 2% — HH
Ao = (X2/2)2 (15H2 +H— xz/z) - x%/2 (12H2H —2H? + BHFI)
By =x%/2 (6H? + B +57/2) , Bo =3 (x%/2)° (3H? + H + x2/2)
@ Note, however,
L2 ko a2)'<2/H2 B20 o
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Switch gauge
@ Spatially flat (I° = 0):
¢547—44@/H)+CKH%,an:cmq{+cxH%,
5xi = —xXC/H + O(H), 6¢f = —¢Ci/H + O(H")
— ill defined at H =0

@ Back to comoving gauge w.r.t. ¢ (6¢¢ = 0):

of = #f — L (665/4) = sl + O

1+3X
3a
M2k
VS = H6¢3 | = —C + O(H)

6xt = xS — %083 /b= ——X_ ¢+ O(H)

aB/Z5 = aBy +6¢5 /9 =

Ck-i-o( )
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@ — divergences exactly cancel out to yield well-defined
perturbations at H = 0

—> valid perturbed action £ = a22(¢2 — 2k2¢2/a?)

@ Comoving gauge w.r.t. x (6x* = 0):

q,x_q)s_@xk) MM+0HO

aB,f_af_f;kJr‘S —75 (75>+0HO
X

\pg_Haii’fZH< Ck>+O(HO)

st =0 - 5 /M o)

—— all finite at H =0
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@ Newtonian gauge (B = 0):

o) = af + < (aBf) = d(C’“>+<Ck>+0(H°)

dt Cdt \H dt \ H
Ol = —aHB}) = —HCk + O(H)
561 = 665 + adBS = —¢C’“ 4% 1 O(H")
Sxn = 0xg +axBy = —ka + ka +O(H°)

— all finiteat H =0
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Evolution of ¢, in the IR in a bounce phase

@ The evolution of (i in the IR through a bounce phase links
perturbations from a contracting phase (scale invariant?) to the CMB

@ Fork — 0,

tde
az?

54_(24-22)4“_0 = ( = const. and C(t)oc/

@ Can ¢ undergo significant amplification? Generally not the case, but if
s0, possibly important non-Gaussianities generated

@ In general, if z & a (constant EoS), then A( < éi(ai/aB)3At
@ Here,
2 k=0 3a2>'<2/M§1 2
Y X2/2M2
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@ One finds A¢ < (;(a;/ap)>E At with

3_Mj a \2 (H2 | 1
s (1 gl ) ()" (i + )

£= 3 M a; \8 H2
1+3{1- 37 (@) fAg
@ Recall
1 L o(1) E>1lisi ibl
- = ~ 1S 1m 1
9 m2 51 , SO s impossible

@ — large wavelength curvature perturbations passing through a
bounce cannot receive more amplification than O(¢;(a;/ap)3At)
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