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Motivation

e General Relativity (GR) with normal matter

—> cosmological singularities are inevitable
(Penrose ['65], Hawking ['67])

e Even inflationary cosmology (within GR) is inevitably past incomplete
(Borde & Vilenkin [gr-qc/9312022], Border et al. [gr-qc/0110012])

e One would thus like to build a theory that is free of these bad
singularities
= one has to go beyond classical GR

e Ultimate goal: a theory of the very early universe embedded in a
quantum theory of gravity without singularities



Alternatives to inflation are often nonsingular
e Emerging scenarios:

e String Gas Cosmology
(Brandenberger & Vafa ['89], Brandenberger [1505.02381])

e Galilean Genesis
(Creminelli et al. [1007.0027], Nishi & Kobayashi [1501.02553])

e Bouncing scenarios:

e Pre-Big Bang cosmology
(Gasperini & Veneziano [hep-th/9211021, hep-th/0207130])

e Ekpyrotic scenario
(Khoury et al. [hep-th/0103239], Lehners [0806.1245])

e Matter Bounce Cosmology
(Wands [gr-qc/9809062], Finelli & Brandenberger [hep-th/0112249], Brandenberger [1206.4196])



Approaches to nonsingular cosmology

e Quantum Gravity:
e Loop Quantum Cosmology (wison-Ewing [1211.6269], Cai & Wilson-Ewing [1402.3009])
e String Theory (cheung et al. [1601.03807))
e Group Field Theory (oriti et al. [1602.08271], Sakellariadou [1703.09498))

e Matter violating the Null Energy Condition (NEC):

e Quintom matter (caiet al. [0704.1090])
o Lee-Wick theory (caietal. [0810.4677))
e Ghost Condensate (Lin et al. [1007.2654))

e Galileon scalar field (i et al. [1108.0593], Easson et al. [1109.1047], Cai et al. [1206.2382], Battarra et
al. [1404.5067])

e Modified Gravity:
o f(R) gravity (amoa etal. [1309.3748))
L] f(T) gravity (Cai et al. [1104.4349], Amoros et al. [1305.2344])
e Gauss-Bonnet gravity samba et al. [1403.3242, 1411.3852))
e Horava-Lifshitz gravity (srandenoerger [0904.2835))
o Effective Field Theory (EFT) (caietal [1610.03400, 1701.04330], Creminelii et al. [1610.04207))

— Different approaches can lead to different predictions



Example: Galileon scalar field
e Cubic Galileon:

M2

1
X = —ig“"vuwm, O0=g¢"V,V,

e Example:

K($,X)=[1-g(@®)X +BX*-V(¢), G(¢,X)=1X

e g(¢) > 1 = ghost condensate — NEC violation
= nonsingular bounce



Cosmological perturbations

Perturbed metric and field:

guu(ta X) = g,uz/(t) + 5guu(tv X) ) ¢(t7 X) = (Z)(t) —+ 5¢(t,X)

Unitary gauge: d¢(t,x) = 0 and
591']' = a2(1 = 2()5@' + a2h¢j ,
where V;h% = 0 and h;' = 0.

¢(t,x): curvature perturbation; h;;(t,x): tensor perturbation
2nd-order perturbed actions:

gl LT 1
S = 8/d4xa5 [h?j - ag(vmj)ﬂ :

SP = / d*z a® [gsg” _ I (6@)2}

a2



Equations of motion and (in)stability

5 = [ dtae? [Gs@ 75 ey

a2
e Conditions:
Gs > 0 < no ghost instability , Fg > 0 < no gradient instability

e Scalar equation of motion in Fourier space:

2 /
z
(z2) Cl/i‘ + C§k2Ck =0,

G+

where ¢2 = Fs/Gs, z = V2a(FsGs)V/4, dr = a~'dt,’ = d/dr.
o If F5 < 0, then ¢2 < 0, and for |cs|k — oo,

C]/g/ - |cs|2k2€k ~0

= (k(t) ~ exp (k / dt |cas((f)) ‘) — instability



No-Go Theorems

Within Horndeski theories ( <= generalized Galileon D cubic
Galileon), it is not possible to have a geodesically complete
spacetime and be free of both ghost and gradient instabilities at all
times (Gs, Fs,Gr, Fr > 0). (Libanov et al. [1605.05992], Kobayashi [1606.05831])

Horndeski theories:
L = Gs(¢, X) — G3(¢, X)06 + Gua(¢, X)R + G4 x[(06)* — (V. V,9)]

G5, x
6

where G, = R — 39 R.

+G5(¢, X)G, VIV —

[(@9)° — 3(0¢)(VuVi)® +2(Vu V)],

Also within EFT (Cai et al. [1610.03400, 1701.04330], Creminelii et al. [1610.04207])

1 E ;EY —E?\ MZH :
S:/d4xN\/E[§M§1<(3)R+ ) - - M (H? + )

1 R 1_ 1_ 3 ;
+5m3ON? — fONSE — SmiSE® — Sm30E S, + }



Evading the No-Go Theorems

e In EFT, include the operator ®) R4 N .

o Work with beyond-Horndeski theories
(Gleyzes et al. [1404.6495, 1408.1952], Gao [1406.0822, 1409.6708], Kobayashi et al. [1504.05710])

e ljjas & Steinhardt 11s00.01255 found a way out with only a quartic Galileon,
but their action vanishes at one instant in time, i.e.

Gr(t,) = Fr(t,) = Gs(t,) = Fs(ty) = 0.

Gauge issue or physical pathology?



Other approach to nonsingular cosmology:
limiting curvature

e The idea of limiting curvature: there should exist a fundamental length
scale ¢ (possibly ~ ¢p;) such that

IR| < €2, R R™| < 7% |V,R VPR | < (75,

1Clupe CHP7| < €78, etc.

o Difficulty: one could have |R,,, R**| < ¢;*, but still
|V,Ru VPR?| — oo.

e Limiting curvature hypothesis: find a theory with a finite number of
curvature invariants bounded, e.g., |R| < £;%, |R,, R*| < 6;4. Then,
when these invariants take on their limiting values, any solution of the
field equations reduces to a definite nonsingular solution.

Mukhanov & Brandenberger [PRL, 1992]



Limiting curvature implementation:
example in special relativity

e Action for a point particle in special relativity:

2

_ Lo, u2 _ U
s=m [at[je2+er-vio)| . Vo= o

v _q _
dp — (14+2¢
e Solving for ¢ in terms of 42 and substituting in the action above, one

finds
S:m/dt\/l—iQ,

°*3,5=0 = i?= )2:>ac2<1Vg0€(oo,oo)

as expected.



Limiting curvature implementation

o Naturally constructed to avoid singularities (contrary to, e.g.,
Galileons)

e Used to construct nonsingular black holes (ol et al. 189, 90}, Morgan 191, Trodden et
al. ['93], Bogojevic & Stojkovic ['00], Easson ['03], Frolov ['16], Chamseddine & Mukhanov ['17])

e In Cosm()logy, the action is (Mukhanov & Brandenberger ['92], Brandenberger et al. [gr-qc/9303001])
2
Mg,

S§=—- /d49€ V=9[R +x1hh —Vi(x1) + x2I2 — Va(x2)] + Sm

where Iy, I can be functions of R, R,,, R*", C,,,,,cC*"P?, etc.
o Assume I, Is ~ O(R). Since R = 12H? + 6H, a natural choice is
I, =12H?, L,=—6H.
e So4,,S =0andd,,S = 0 gives the constraint equations

L:12H2:ﬁ, IL,=-6H=-—2 dVs
dx1 dya



Limiting curvature implementation: cosmology

e Recover Einstein gravity (Minkowski in vacuum, FRW with matter)
— as |xn| < 1, require Vi, (xn) ~ X2

e V/ — const as |x1| — oo, Vj — 0 as |xz2| — o
— |H| < maxand H — 0
= asymptotically de Sitter

e Eg.,

2 In(1 +
Vi(x1) = 12H 7 jlel (1 - i ij”) :

X2
Va(x2) = —12H? 2x



Example: de Sitter to Minkowski (inflation)
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Example: de Sitter to Minkowski (inflation
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Example: Minkowski to Minkowski (genesis)
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Example: Minkowski to Minkowski (genesis)
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Perturbations and stability

L=R+x1li — V1(X1) + x2l2 — Va(x2)

Mukhanov & Brandenberger ['92] took

I = \/12RWRW _3R?2, IL,=L+R.

One can check that 12R,,, R* — 3R? > 0 for any spherically
symmetric metric

I = 0 only for Minkowski and de Sitter

In an FLRW background, I; = 12H2 and I, = —6H as wanted



Perturbations and stability
L=R+x1 (R + \/12R,, Riv — 3R2) — Vi(x1)
+ x2v/12R,,, RH — 3R? — VQ(X2)
e Consider tensor perturbations:
8gij = a”hij

e 2nd-order perturbed action (in Fourier space):
@) . . k?
Sy D / dtd®k a® <gThi + Krh? —MTGth> :

X1+ X2
g — e
4 201

— Ostrogradski instability (corresponds to a linearly unstable
Hamiltonian)



Possible resolution

L=R+x1li —Vi(x1) + x2l2 — Va(x2)

¢ Include the Weyl tensor squared:

I = \/12R,, R — 3R? + 35C1upeCH77 . =D+ R.
e Perturbing the action in the tensor sector:
5O 5 [ ata®ka® (Gri2 + Kopi? — Moo n2
T TNy TN T 2% )

X1+ X2
gr=—-02+k T
r=—(2+m)X

— k= —2 = Gr = 0 — no Ostrogradski ghost
e [s it valid at higher order (S}?’), (T4), )?



Perturbations modes

E= Bt (R + /12, R — 3R — 602) — Vi(x1)

+x2\/12Ruy R#¥ — 3R2 — 6C% — Va(x2),  C = Chups CHP°

No propagating vector modes
Tensor and scalar modes:

. k2
S ~ / dtd’k a® (icThz - MTazhz>

S ~ / dtd’k a® (icséz —Mg(k)q)%)

Mg(k) ~ O (’;—i) for £ > 1 — modified dispersion relation

Kr, Mr, Ks, Mg are complicated functions of x,, and V,,(x») that
can be positive or negative depending on the background trajectory
— possible ghost and gradient instabilities



Stability during inflation
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Stability during genesis




Equivalent to Gauss-Bonnet gravity

=Rt (R i \/12RWRW _3R2 602) — Vi(x1)

T \/IQRWRW —3R2 —6C2 — Va(x2), C2 = CuypeCHP°
e The theory is simply £ = f(R,G)

e Indeed,
I =R++VR*-6G, I,=+R>-6G,
since
G = R? — 4R, R™ + Ry po R*P°
C? = Ruypo RMP7 — 2R, R + L R?
= 6G = 4R* — 12R,,,R" + 6C*
e In an anisotropic background, f(R, G) gravity has inevitable ghost

degrees of freedom, which are absent on FLRW backgrounds
(De Felice & Tanaka [1006.4399])



Construct another curvature invariant function

L=R+x1li —Vi(x1) +x2l2 — Va(x2)

Consider first derivatives of R:

XH*, =VHRV,R, X =V'RV,R

For a flat FLRW background,

X = —36(4HH + H)?

Want to construct I; such that I; = 12H?:
1

Il = _X3

[4X2(V,V,R)? — 2X(V,X)? + (V,RV,X)?]

Then, I =1, — Rand I, = —6H.



Perturbations for the new curvature invariant function

e No propagating vector modes
e Tensor modes:

X 2
S~ / dtd3k a® </cThz —MT’;hz>

where
:1+4X1+3X27 MT:1—X2
2 2
o No Ostrogradski instability. No ghost or gradient instabilities as long
as xy2 < land x1 > —(1+ 3x2)/2.

e No superluminality = 2= Mzp/Kr <1 = x1 > —Xo-

Kt

o Similar story in the scalar sector, though the conditions on x; and 2
are slightly more non-trivial
— the theory could be used to construct stable nonsingular
inflationary or genesis scenarios



Stability during inflation




Stability during genesis




Other approaches to nonsingular cosmology

with limiting curvature
o Mimetic gravity (chamseddine & Muknanov [1612.05860))

1
5 =283 [ ate /=g | -3 R+ A(e9,60,6 ~ 1)+ £(08)| + 5.
with Born-Infeld type action,

FO8) =1—,J1- 8
Py

e Constraint:
g 0,90, =1

e Friedmann equation:



Nonsingular bouncing cosmology

1 P
H>=—_p <1 = —)
3M1gl Pf

e As p — ps, H — 0. Infact, H is maximal at p = pf/2, so

H? < Pf ;
12M2,

o Therefore, |R| < M2 = (7%, |RuwR™| < £5*, and so on
s all curvature invariants are bounded
— limiting curvature hypothesis is realized

¢ Same modified Friedmann equation as in Loop Quantum Cosmology
(Bodendorfer et al. [1703.10670], Liu et al. [1703.10812])

¢ Naturally leads to nonsingular bouncing cosmology

e |s mimetic gravity stable or unstable? (sarinsky [1311.3111], Chaichian et al. [1404.4008],
Ramazanov et al. [1601.05405], Ben Achour et al. [1602.08398], Firouzjahi et al. [1703.02923], Hirano et al. [1704.06031])



Conclusions

e Simple nonsingular cosmologies with Galileon scalar fields are
unstable (no-go theorem)
— one needs to consider beyond-Horndeski theories

e Other approach: limiting curvature

e Old model of Mukhanov & Brandenberger has Ostrogradski
instabilities

e Can be cured by including the Weyl tensor squared
— still important ghost and gradient instabilities
— equivalent to f(R, G) gravity

e New curvature invariant constructed with derivatives of R leads to no
apparant Ostrogradski instability

e Inflationary and genesis scenarios are mostly stable with regards to
ghost and gradient instabilities

o Still very hard to construct stable nonsingular cosmologies



What's next?

Construct viable nonsingular inflationary and genesis scenarios:

get 60 e-folds (inflation)

have slow-roll (inflation)

reach the right energy scale (genesis)

recover Einstein gravity sufficiently fast

have a reheating mechanism — include matter after the early phase
— how does matter affect stability?

Explore cosmological observables
Explore nonsingular bouncing cosmology

How does the theory with limiting curvature fit in the greater picture of
scalar-tensor theories of gravity?

— included in beyond-Horndeski theories? in Degenerate
Higher-Order Scalar-Tensor (DHOST) theories?
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