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How do we get the CMB?
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A few possibilities for the early universe

Inflationary, bouncing, emerging, ...

−→ various models can explain the CMB with more or less success
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The early universe as a quantum computer

If we were to simulate the perturbations of the early universe with a
quantum computer, how complex would it be?

With a quantum circuit, how many quantum gates would it require?

−→ actual quantum algorithms can be constructed!
e.g., Li & Liu, “On Quantum Simulation Of Cosmic Inflation” [2009.10921]
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An introduction to quantum circuits
e.g., Jefferson & Myers [1707.08570]

Start with a Reference and Target state, both Gaussian and with respective
frequencies ω and Ω (1-d harmonic oscillators):

|ΨR〉 =
(ω
π

)1/4

e−
1
2ωx

2

, |ΨT〉 =

(
Ω

π

)1/4

e−
1
2 Ωx2

, |ΨT〉 = Û |ΨR〉

Example of gates that can constitute the unitary evolution (p̂x = −i∂̂x):

Â ≡ eiε Â|Ψ(x)〉 = eiε|Ψ(x)〉

Ĵ ≡ eiεp̂x = eε∂̂x Ĵ |Ψ(x)〉 = |Ψ(x+ ε)〉

Q̂ ≡ e ε2 eiεx̂p̂x = e
ε
2 eεx̂∂̂x Q̂|Ψ(x)〉 = e

ε
2 |Ψ(eεx)〉

Here take:
Û = Q̂α −→ Q̂αe−

1
2ωx

2

= e
αε
2 e−

1
2ωe

2αεx2

=⇒ 2αε = ln(Ω/ω) does the job
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Circuit complexity

Complexity counts the # of gates: C = εα = 1
2 ln(Ω/ω)

In cosmology generally ω,Ω ∈ C, so ‘analytically continuing’ the formula
suggests

C = ε|α| = 1

2

∣∣∣∣ln(Ω

ω

)∣∣∣∣ =
1

2

√(
ln

∣∣∣∣Ωω
∣∣∣∣)2

+

(
arctan

[
Im(Ω/ω)

Re(Ω/ω)

])2

First done by Bhattacharyya+ [2001.08664,2005.10854]

The general idea is that a circuit can have a continuous differential-geometry
description
⇒ optimal quantum simulation ≡ smallest number of gates ≡ geodesic
Nielsen [quant-ph/0502070], Jefferson & Myers [1707.08570], Camargo+ [1807.07075], Ali+ [1810.02734], Chapman+

[1810.05151]
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Covariant matrix approach
Gaussian states⇒ all info in 2-pt functions, which can be split into sym. and
anti-sym. parts. Write ξm = (x, p):

2〈Ψ|ξmξn|Ψ〉 = Gmn + iΩmn

cov. matrix : Gmn = 〈Ψ|{ξm, ξn}|Ψ〉 =

(
2〈x2〉 〈xp+ px〉
〈xp+ px〉 2〈p2〉

)
cano. comm. rel. : iΩmn = 〈Ψ|[ξm, ξn]|Ψ〉 = i

(
0 1
−1 0

)
Evolution: |ΨT〉 = Û |ΨR〉 −→ GT = UGRUT

If we write |ΨR〉 = (k/π)1/4e−
1
2kx

2

and |ΨT〉 = (A/π)1/4e−
1
2 (A+iϕ)x2

,
k,A, ϕ ∈ R, then

GR =

(
1
k 0
0 k

)
, GT =

( 1
A − ϕ

A
− ϕ
A

A2+ϕ2

A

)
Canonical commutation relation preserved under ξm → ξ̃m = Mm

nξ
n as

long as MTΩM = Ω ⇐⇒ M ∈ Sp(2,R)
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Covariant matrix approach
To go from GR to GT, only a sub-algebra of sp(2,R) is needed as gates to
construct U:

M1 =

(
−1 0
0 1

)
, M2 =

(
0 0√
2 0

)
Continuous evolution is then

U(s) =
←−
P exp

(∫ s

0

ds̃ Y I(s̃)MI

)
=

( √
z 0
y√
2z

1√
z

)
where the Y I ’s are just on/off switches and (y, z) are rescaled coordinates
such that

(y0, z0) = (0, 1) , (y, z) =

(
− ϕ√

2A
,
k

A

)
The geometry is found from (choosing a metric gIJ = diag(1, 1/2))

dY I =
1

2
Tr(dU U−1MT

I )⇒ gIJdY IdY J =
dz2 + 1

2dy2

4z2
⇒ H2 geometry!
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Hyperbolic geometry interpretation:
Poincaré half-plane and disk

(y0, z0) = (0, 1) −→ (y1, z1) =

(
− ϕ√

2A
,
k

A

)
Z≡y+iz←→ Z − i

Z + i

Complexity = geodesic length:

C =
1

2
argcosh(X) =

1

2
ln
(
X +

√
X2 − 1

)
,

X =
z2

0 + z2
1 + 1

2 (y1 − y0)2

2z0z1
=

1

2

(
A
k

+
k

A
+
ϕ2

kA

)
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Soon to be applied to early universe cosmology!
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Cosmological perturbations — a quick review
In GR, consider comoving curvature perturbations about FRW:
δgij(t,x) = 2a(t)2R(t,x)δij =⇒

S(2) =

∫
d3xdt a3ε

(
Ṙ2 − (∂iR)2

a2

)
, ε ≡ − Ḣ

H2
=

3

2

(
1 +

p

ρ

)
The canonically normalised variable is v ≡ zR, z2 ≡ 2εa2, such that
(w/ dτ ≡ a−1dt and going to Fourier space)

S(2) =
1

2

∫
d3kdτ

[
(v′k)2 − k2v2

k − 2
z′

z
vkv
′
k +

(
z′

z

)2

v2
k

]

=⇒ v′′k +

(
k2 − z′′

z

)
vk = 0 (Mukhanov-Sasaki)

Quantize Fourier modes vk → v̂k = vk(τ)âk + v∗k(τ)â†−k
with commutation relations [âk, â

†
−p] = (2π)3δ(3)(k + p), so âk|0〉 = 0

and with conjugate momentum

Π̂ ≡ ∂S(2)

∂v′
= v̂′ − z′

z
v̂ ⇒ [v̂(τ,x), Π̂(τ,y)] = iδ(3)(x− y)
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The (less conventional) Schrödinger picture
Quantum fluctuations are described by Gaussian wavefunctions
(1-d harmonic oscill.):

|Ψk〉 ∝ exp

(
−1

2
Avvv

2
k

)
= exp

(
−1

2
ARRR2

k

)
Avv, ARR = correlators

Upon inverting, iâk =
(
v∗′k − z′

z v
∗
k

)
v̂k − v∗kΠ̂k,

so from the vacuum state âk|Ψk〉vac = 0⇒

Avv = −iv
∗′
k

v∗k
+ i

z′

z
, ARR = z2Avv

The Schrödinger eqn. i|Ψk〉′ = Ĥ|Ψk〉 ⇔ Heisenberg EOM
(Mukhanov-Sasaki mode function)

Bunch-Davies vacuum (−kτ →∞):

vk(τ) =
e−ikτ√

2k
⇒

{
Avv ' k
ARR ' 2εka(τ)2

⇒ |Ψk〉vac = |Ψk〉R =

(
k

π

)1/4

e−
1
2kv

2
k
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Quantum-to-classical transition

What is the large-scale/late-time (−kτ → 0) Target state?

|Ψk〉T =

(
A
π

)1/4

e−
1
2 (A+iϕ)v2k ∝ e− 1

2Avvv
2
k

We want fluctuations to classicalize. WKB⇒ phase of the wavefunction
must vary much faster than its amplitude:∣∣∣ϕA ∣∣∣ =

∣∣∣∣ ImAvv
ReAvv

∣∣∣∣→∞ ⇒ squeezed state

A = ReAvv → 0 ⇒ amplified state

(∆v)2 ≡ 〈v̂2〉 − 〈v̂〉2 = 〈v̂2〉 =
1

2A
, (∆Π)2 =

A
2

(
1 +

ϕ2

A2

)
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Recall hyperbolic complexity

(y0, z0) = (0, 1) −→ (y1, z1) =

(
− ϕ√

2A
,
k

A

)
→ (±∞,∞)

Z≡y+iz←→ Z − i
Z + i

→ 1 + 0i

Complexity = geodesic length: C = 1
2
argcosh(X) = 1

2
ln

(
X +

√
X2 − 1

)
X =

z20 + z21 + 1
2
(y1 − y0)2

2z0z1
=

k

2A +
A
2k

(
1 +

ϕ2

A2

)
= k(∆v)2 +

(∆Π)2

k
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Let’s apply it!
Constant-EoS single-field models (adiabatic perturbations):

v′′k +

(
k2 − α2 − 1/4

τ2

)
vk = 0 , α ≡ 1

2

∣∣∣∣3− ε1− ε

∣∣∣∣
⇒ vk(τ) =

√
−πτ
2

H(1)
α (−kτ) ⇒ Avv = ik

(
H

(1)
α−1(−kτ)

H
(1)
α (−kτ)

)∗
Scale-invariant models (α ≈ 3/2) as −kτ → 0:

I Inflation (ε ≈ 0):

ARR ∼ 1 +
i

τ
, 〈R̂2〉 =

1

2 ReARR
∼ const. ,

∣∣∣∣ ImARR
ReARR

∣∣∣∣ ∼ 1

τ
→∞

I Matter contraction, a.k.a. matter bounce (ε ≈ 3/2):

ARR ∼ τ6 + iτ5 , 〈R̂2〉 =
1

2 ReARR
∼ 1

τ6
,

∣∣∣∣ ImARR
ReARR

∣∣∣∣ ∼ 1

τ
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Full evolution on the Poincaré disk

Lehners & JQ [2012.04911]
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Ekpyrotic cosmology
Scalar fields (σ, s) with steep negative exponential potentials, so with
ultra-stiff EoS (ε > 3⇔ w > 1), which drives slow contraction (a ∝ (−t)1/ε)

V (σ, s) ' −V0e
−
√

2εσ
[
1 +

κ2

2
εs2
]
, κ2 ∼ O(1)

Adiabatic (σ) perturbations aren’t amplified and remain blue

Entropy (or isocurvature; s) perturbations, u ≡ a δs:

u′′k +

(
k2 − a′′

a
+ a2 ∂

2V

∂s2

)
uk = 0

⇒ uk(τ) =

√
−πτ
2

H(1)
αs (−kτ) , αs

κ2≈1
≈

√
9

4
− 3

ε

ε�3
≈ 3

2
⇒ scale inv.

⇒ Auu = − i

(ε− 1)τ

[(
1

2
− αs

)
(ε− 1)− 1

]
+ ik

H
(1)∗
αs−1(−kτ)

H
(1)∗
αs (−kτ)

⇒ Aδsδs ∼ τ2 +
i

τ
, 〈δ̂s

2
〉 =

1

2 ReAδsδs
∼ 1

τ2
,

∣∣∣∣ ImAδsδs
ReAδsδs

∣∣∣∣ ∼ 1

τ3
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super-horizon: ∆Cinf.
R '

√
2(1 + 2ε)∆N ,

∆Cekp. (iso.)
δs ' 2

√
2

(
ε− 3

2

ε− 1

)
∆N , ∆Cmatter

R ' 3
√

2∆N

Lehners & JQ [2012.04911]
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Conclusions

Complexity depends on very few things, mainly on the model in
question and the number of e-folds −→ useful classifier of models

Very mild dependence on specifics within a given model, in
particular mild dependence on EoS and no direct dependence on
wavenumber nor on magnitude of the potential

Even though all models must achieve precisely the same end state,
both the representation on the Poincaré disk and the behaviour of
complexity highlight the differences between models
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