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Introduction and Motivation
• We search for a causal mechanism that can explain the observed

large scale structures of our universe from primordial fluctuations
• The standard picture is ‘horizon exit’ and ‘horizon re-entry’
• E.g., inflation: a(t) ∝ eHt, H ' const., H−1 = Hubble radius
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Successes of Inflation

Inflation explains:

• the formation of structure problem

• the horizon problem

• the flatness problem

• the monopole problem

Also, it gives (in general):

• nearly scale-invariant power spectra of curvature and tensor
perturbations

• small non-Gaussianities
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Conceptual Issues of Inflation
• Trans-Planckian problem Brandenberger & Martin [hep-th/0005209, hep-th/0410223]

• Singularity problem Hawking & Penrose [’70]; Borde & Vilenkin [gr-qc/9612036]; Borde et al. [gr-qc/0110012]

• and more Brandenberger [1203.6698]
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Alternatives to Inflation
• There are a number of alternative scenarios for the very early

universe
• E.g., nonsingular bouncing cosmology
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Nonsingular Bouncing Cosmology

• Solves the problems of standard Big Bang cosmology

• Free of the trans-Planckian problem

• Can avoid the initial Big Bang singularity

What about the connection to observations?
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Matter Bounce Scenario

• Perturbations exit the Hubble radius in a matter-dominated
contracting phase, when a(τ) ∝ τ2

• With a initial quantum vacuum, curvature perturbations have a
scale-invariant primordial power spectrum Wands [gr-qc/9809062]; Finelli & Brandenberger
[hep-th/0112249]
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Power Spectra for the Matter Bounce

• Power spectra:
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• Tensor-to-scalar ratio:
r ≡ PtPR

= 24

• Observations: r < 0.07 (2σ) BICEP2 [1510.09217]

−→ Ruled out!
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Possible Resolution #1

• What if cs � 1, e.g. with a k-essence scalar field?

• Curvature perturbations are amplified:
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=⇒ r = 24cs

• But the scalar three-point function as well Li, JQ et al. [1612.02036]
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• Cannot simultaneously satisfy observational bound on r and
f localNL = 0.8± 5.0 (1σ) Planck [1502.01592]

• Also, cs � 1 with a fluid =⇒ Jeans (gravitational) instability =⇒
black hole formation JQ & Brandenberger [1609.02556]
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Possible Resolution #2

• What if R grows during the nonsingular bounce phase?
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• Creates large non-Gaussianities JQ et al. [1508.04141]
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• =⇒ cannot simultaneously satisfy observational constraints on r
and fNL

Jerome Quintin (McGill U.) Saving the Matter Bounce with Massive Gravity? (arXiv:1711.10472) 10 / 21



Matter Bounce No-Go Theorem

• A lower bound on the amplification of curvature perturbations R
⇐⇒ an upper bound on the tensor-to-scalar ratio r
⇐⇒ a lower bound on primordial non-Gaussianities fNL

• With Einstein gravity + a single (not necessarily canonical) scalar
field:

satisfying the current observational upper bound on r cannot be
done without contradicting the current observational constraints on
fNL (and vice versa) JQ et al. [1508.04141]; Li, JQ et al. [1612.02036]
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Evading the No-Go Theorem

• Multiple fields, e.g., matter bounce curvaton scenario (entropy modes
sourcing curvature perturbations) Cai et al. [1101.0822]

• Or with a single field, go beyond Einstein gravity
−→ need to modify tensor modes

• Add a nontrivial mass mg to the graviton:
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Tensor Power Spectrum with Massive Gravity

• mg � |H∗| at horizon exit:
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• In both cases, r(0.05 Mpc−1)� 0.07 Lin, JQ & Brandenberger [1711.10472]
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Anisotropy problem
• Consider

ds2 = −dt2 + a2
∑
i

e2θi(dxi)2 ,
∑
i

θi = 0

• Einstein gravity = Friedmann equations + anisotropies:

θ̈i + 3Hθ̇i = 0 =⇒ θ̇i ∼ a−3 =⇒ ρθ ∼
∑
i

θ̇2i ∼ a−6

• Analogous to a massless scalar field

Lθ = −1

2
∂µθ∂

µθ =⇒ pθ = ρθ

• Anisotropies dominate at high energies:

H2 =
1

3M2
Pl

(
ρ0m
a3

+
ρ0rad
a4

)
− k

a2
+

Λ

3
+
ρ0θ
a6

Jerome Quintin (McGill U.) Saving the Matter Bounce with Massive Gravity? (arXiv:1711.10472) 14 / 21



Anisotropies with Massive Gravity
• With a massive graviton Lin, JQ & Brandenberger [1711.10472]
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• mg � |H| =⇒ ρθ ∼ a−3 (i.e., pθ = 0)

• No anisotropy problem anymore:

H2 =
1

3M2
Pl

(
ρ0m
a3

+
ρ0rad
a4

)
− k

a2
+

Λ

3
+
ρ0θ
a3

• Would need mg � |HB−|, but mg < 7.2× 10−23 eV (2σ) today
−→ requires mg(t) or symmetry breaking
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Effective Massive Gravity Action

• ADM decomposition:

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt)

• Effective massive gravity action:

S =

∫
dtd3x

√
γ

(
N

(
M2

Pl

2
R− Λ

)
−m2

gV [γij ]

)
• The nonderivative potential V [γij ] is independent of the lapse N

−→ only 2 DoF propagate (2 polarization states of GWs), but
diffeomorphism invariance is broken Comelli et al. [1407.4991]
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Effective Massive Gravity Action

• In the EFT language, take

V [γij ] ∼M2
Plδ̄γ

ij δ̄γij

where δ̄γij denotes the traceless part of the linear perturbations of
the spatial metric Lin & Labun [1501.07160]

• =⇒ background unaffected (Friedmann equations unchanged)
scalar and vector perturbations unaffected
tensor perturbations and anisotropies receive a mass term (mg)

• Can be implemented with Stückelberg scalar fields (additional slides)
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Conclusions

• The matter bounce scenario is an alternative to inflation

• It naturally predicts a very large tensor-to-scalar ratio (r)

• r cannot be suppressed by enhancing curvature perturbations;
otherwise fNL is too large

• Tensor modes can be suppressed with a (Lorentz-violating) massive
graviton

• Anisotropies are suppressed likewise, but need mg(t)

• In sum, the simple idea of the matter bounce doesn’t fit with
observations; needs nontrivial theory to work

• Motivates us to keep looking for and testing alternative scenarios for
the very early universe
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Additional Slides: Action with Stückelberg Scalar Fields

• Introduce 1 timelike (φ0) and 3 spacelike (φi) Stückelberg scalar fields
with the following VEVs:

φ0 = f(t) , φi = xi

• Impose symmetries:

φi → Λijφ
j , φi → φi + Ξi(φ0)

Λij : SO(3) rotation operator; Ξi : generic function of φ0
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Additional Slides: Action with Stückelberg Scalar Fields

• The following quantities are invariant under the symmetries Dubovsky et
al. [hep-th/0411158]

X = gµν∂µφ
0∂νφ

0

Zij = gµν∂µφ
i∂νφ

j − (gµν∂µφ
0∂νφ

i)(gαβ∂αφ
0∂βφ

j)

X

• The following operator is traceless Lin & Sasaki [1504.01373]

δ̄Zij =
Zij

Z
− 3

δk`Z
ikZj`

Z2
, Z = δijZ

ij

• Construct quadratic operator graviton mass term:

Lmass ∼M2
Plm

2
gδikδj`(δ̄Z

ij)(δ̄Zk`)

• Resulting theory has 2 gravitational DoF Lin, JQ & Brandenberger [1711.10472]
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