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Introduction and Motivation

e We search for a causal mechanism that can explain the observed
large scale structures of our universe from primordial fluctuations

e The standard picture is ‘horizon exit’ and ‘horizon re-entry’
e E.g., inflation: a(t) o ef*, H ~ const., H~! = Hubble radius
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Successes of Inflation

Inflation explains:

o the formation of structure problem
e the horizon problem

e the flatness problem

o the monopole problem

Also, it gives (in general):

e nearly scale-invariant power spectra of curvature and tensor
perturbations

e small non-Gaussianities
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Conceptual Issues of Inflation
e Trans-Planckian problem Brandenberger & Martin [hep-th/0005209, hep-th/0410223]
L] Singularity prOblem Hawking & Penrose ['70]; Borde & Vilenkin [gr-qc/9612036]; Borde et al. [gr-qc/0110012]

e and more Brandenberger [1203.6698]
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Alternatives to Inflation

e There are a number of alternative scenarios for the very early

universe

e E.g., nonsingular bouncing cosmology
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Nonsingular Bouncing Cosmology

e Solves the problems of standard Big Bang cosmology
¢ Free of the trans-Planckian problem

e Can avoid the initial Big Bang singularity

What about the connection to observations?
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Matter Bounce Scenario
e Perturbations exit the Hubble radius in a matter-dominated

contracting phase, when a(7) oc 72

 With a initial quantum vacuum, curvature perturbations have a
scale-invariant primordial power spectrum wands [gr-qc/9809062]; Finel & Brandenberger

[hep-th/0112249]
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e Same for tensor modes:
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Power Spectra for the Matter Bounce

e Power spectra:

k3 1 H?
k)= — 2 B—

Pr(k) = 5 IRel” = 5 M2,
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E)=2x —|h)|? = — -2~

Pik) =2 % galhel® = 5537

e Tensor-to-scalar ratio:
r= —Pt =24
= P

e Observations: » < 0.07 (20’) BICEP2 [1510.09217]

— Ruled out!
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Possible Resolution #1

What if ¢; < 1, e.g. with a k-essence scalar field?

Curvature perturbations are amplified:
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48n2cs ME, " e

2
ug+<2k2—T>vk_o — Pr(k) =

But the scalar three-point function as well i, sa etal 11612.02036)
165 , 6
16 863

Cannot simultaneously satisfy observational bound on r and
local 0 8 :i: 5 0 ( ) Planck [1502.01592]

flocal ~ _

Also, ¢ < 1 with a fluid = Jeans (gravitational) instability —
black hole formation .a & srandenberger (1609.02556)
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Possible Resolution #2

e What if R grows during the nonsingular bounce phase?

AR 2

Rbefore bounce

T'before bounce

_ ‘1 .
Tobs

o Creates large non-Gaussianities Ja etal (1508.04141]
AR >#
Rbefore bounce

fNLO<<

e — cannot simultaneously satisfy observational constraints on r
and fNL
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Matter Bounce No-Go Theorem

e A lower bound on the amplification of curvature perturbations R
<= an upper bound on the tensor-to-scalar ratio
<= a lower bound on primordial non-Gaussianities fnr,

e With Einstein gravity + a single (not necessarily canonical) scalar
field:

satisfying the current observational upper bound on r cannot be
done without contradicting the current observational constraints on
fNL (and vice versa) JQ et al. [1508.04141]; Li, JQ et al. [1612.02036]
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Evading the No-Go Theorem

o Multiple fields, e.g., matter bounce curvaton scenario (entropy modes
sourcing curvature perturbations) caietar 11010822

¢ Or with a single field, go beyond Einstein gravity
— need to modify tensor modes

e Add a nontrivial mass m, to the graviton:

@

tensor

> a? [(h;j)2 _ (Vhl-j)ﬂ —a? [(h;j)2 — (Vhy)? — m§a2h$j]
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Tensor Power Spectrum with Massive Gravity

e my < |H,| at horizon exit:

1 k Nt HBf 2—ny 8m2
k)~ — ~ 0
Pe(k) = 53 <aMP1> M1 "= gE S

e mgy > |H,| at horizon exit:
2 (E\® 1
Pu(k) = — | —
«(k) 2 <a> M2 my

e In both cases, T(0.05 MpCfl) < 0.07 Lin, Ja & Brandenberger [1711.10472]

Jerome Quintin (McGill U.) Saving the Matter Bounce with Massive Gravity? (arXiv:1711.10472)

13/21



Anisotropy problem

e Consider

ds? = —dt? + a2 Z i (dxt)?, Z 0; =0

e Einstein gravity = Friedmann equations + anisotropies:

0, +3HO, =0 = 6 ~a® = pgrvz&?wa_fi
i

e Analogous to a massless scalar field
1
Loy = —§OH98M9 = Po = Py

o Anisotropies dominate at high energies:

H2 = 1 & pgad — ﬁ + é + &8
3ME, \ a® at a2 3  af
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Anisotropies with Massive Gravity

e With a massive graviton Lin, JQ & Brandenberger [1711.10472]

1 1,0
Lo = ~50,00"0 — Smo

—>éi+3Héi+m30i:O, pgNZ(9?+m§9?)
[

o mg>|H| = pg~a®  (ie,py=0)
¢ No anisotropy problem anymore:

1 pO pO k A /)0
b2 — m rad | _ % , i
3ME, < 2

asd at

3

o Would need m, > |Hp_|, but m, < 7.2 x 10723V (20) today

— requires my(t) or symmetry breaking
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Effective Massive Gravity Action

e ADM decomposition:
ds® = —N2dt* + ;;(dz’ + N'dt)(dz? + NYdt)

o Effective massive gravity action:

M2
S = /dtd3x vV <N <2HR — A> - mEV[%—j})
¢ The nonderivative potential V'[v;;] is independent of the lapse N

— only 2 DoF propagate (2 polarization states of GWs), but
diffeomorphism invariance is broken comeli eta. [1407.4991]
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Effective Massive Gravity Action

¢ In the EFT language, take
Vivig) ~ M6 6

where 572-]- denotes the traceless part of the linear perturbations of
the spatial metric vin & Labun [1501.07160]

e — background unaffected (Friedmann equations unchanged)
scalar and vector perturbations unaffected
tensor perturbations and anisotropies receive a mass term (m)

e Can be implemented with Stlickelberg scalar fields (additional slides)
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Conclusions

The matter bounce scenario is an alternative to inflation
It naturally predicts a very large tensor-to-scalar ratio (r)

r cannot be suppressed by enhancing curvature perturbations;
otherwise fnr, is too large

Tensor modes can be suppressed with a (Lorentz-violating) massive
graviton

Anisotropies are suppressed likewise, but need m(t)

In sum, the simple idea of the matter bounce doesn'’t fit with
observations; needs nontrivial theory to work

Motivates us to keep looking for and testing alternative scenarios for
the very early universe
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Additional Slides: Action with Stlickelberg Scalar Fields

e Introduce 1 timelike (¢°) and 3 spacelike (¢?) Stiickelberg scalar fields
with the following VEVs:

e Impose symmetries:

¢ = A’ ¢ = ¢+ EP))

A'j : SO(3) rotation operator; = : generic function of ¢°
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Additional Slides: Action with Stlickelberg Scalar Fields

e The following quantities are invariant under the symmetries oubovsky et
al. [hep-th/0411158]

X = g 8,8°0,¢"

(9" 08°0, ") (9°° 00 6°03¢")
X
e The following operator is traceless Lin a sasai[1504.01373)

ZH = guua”¢iay¢j -

_ . Zu Sp 2k 73t
0ZY = — —3———
A Z? ’

e Construct quadratic operator graviton mass term:

Z =629

ﬁmass ~ Mglmgéikéjg(gZ“)(EZ“)
¢ Resulting theory has 2 gravitational DOF i, Ja & Brandenberger [1711.10472)
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