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Motivation

¢ GR + normal matter = inevitable singularities penrose (1965), Hawiing (1967, ...

Even inflationary cosmology (within GR) is inevitably past incomplete
and often inextendible sorde & viienkin (1994), Border et al. (2003), Yoshida & Ja (2018), ...

One would thus like to build a theory that is free of these singularities
—> one has to go beyond classical GR

Singularity resolution <= modify GR (modified gravity, quantum
gravity) or matter (energy conditions)
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Alternatives to inflation are often non-singular

® Emerging scenarios:

L4 Strlng Gas CosmO|Ogy Brandenberger & Vafa (1989), Brandenberger (2015), ...

® Galilean Genesis creminelii et al. (2010), Nishi & Kobayashi (2015), ...

® Bouncing scenarios:

® Pre-Big Bang cosmology casperini & Veneziano (1993, 2003), ...
® Ekpyrotic scenario knoury et al. (2001), Lehners (2018), ...

® Matter Bounce Cosmology Wands (1999), Finelli & Brandenberger (2002), Brandenberger (2012), ...
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Approaches to non-singular cosmology

® Quantum gravity: e.g., loop quantum cosmology (Wilson-Ewing (2013), Cai &

Wilson-Ewing (2014), ..), String theory (Cheung et al. (2016), ..), group field theory (ori et
al. (2016), Sake\lanadou (2017) .)

e Matter violating the Null Energy Condition (NEC): e.g., quintom
matter, Lee-Wick theory, ghost condensate, Galileon scalar field caiet

al. (2007,2009), Lin et al. (2010), Qiu et al. (2011), Easson et al. (2011), Cai et al. (2012), ...

¢ Modified gravity: e.g., f(R), f( ) Gauss-Bonnet gravity, etc. samoa et

al. (2013,2014,2015), Cai et al. (2011), Amoros et al. (2013
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Issues

e A popular avenue: consider a generic scalar-tensor theory, e.g.,
Horndeski, with many free functions

® Those admit non-singular cosmological background solutions

® However, perturbations are often plagued with instabilities: ghosts

and gradient instabilities — indications for a no-go theorem Lisanov et
al. (2016), Kobayashi (2016), Creminelli et al. (2016), Cai et al. (2017), ...

® Very few ways of evading the no-go theorem and often at some costs
ljjas & Steinhardt (2016,2017), Cai & Piao (2017), Cai et al. (2017), Kolevator et al. (2017), Dobre et al. (2017), Mironov et
al. (2018,2019), Ye & Piao (2019), Banerjee et al. (2019), ...
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Limiting curvature

¢ Different approach to singularity resolution: impose constraint
equations that ensure the boundedness of curvature
— limiting curvature

e Example of implementation wuknanov & Brandenberger (1992), Brandenberger et al. (1993)

S = Sgm + /d4:v V=g [Z ¢ili(Riem, g, V) — V (o1, ..., ¢n)
=1

V| < 00 Vyp; = bounded curvature

Pi

¢ Concrete model (e.g., n = 2)

I = \/12}3“,,1%” 32" H, L=R+L & H

® — non-singular background cosmology, but severe instabilities voshida,
JQet al. (2017)
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® Another implementation of limiting curvature: mimetic gravity chamseddine
& Mukhanov (2013,2017), ...
S_SEH+/d4x\ﬁ[ (0,00"¢ + 1) + xO¢ — V(x)]

538 =0 => 0,00"¢ = —1
(5XS:O = Up =V,

® Eg.,¢9=t = [l¢ =3H, so bounding V, ensures H does not
blow up

® Yet, mimetic gravity suffers from (gradient) instabilities ijas etal. 2016), Firouzjani
et al. (2017), Langlois et al. (2019), ...
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Cuscuton gravity

e Setup: GR + non-dynamical scalar field ¢ on cosmological
background
e Subclass of ‘minimally-modified gravity’ (modified gravity with only 2

d.o.f., i.e., the 2 tensor modes of GR) Lin & Mukohyama (2017), Carballo-Rubio et al. (2018),
Aoki et al. (2018,2019), Lin (2019), Mukohyama & Noui (2019)

¢ QOriginal implementation: start with k-essence theory assnordiet al. (2007)

S = Sex + / d'z=gP(X, ), = 50,0015

555 =0 2 (Px +2XPxx)$+3HPxd+ Pxsd>— Py =0

® Requiring Px +2XP xx = 0 sets
P(X,¢) = c1(¢)V|X]| + c2(o
® Rescaling ¢, we can write

ﬁcuscuton = :tM]% V2X — V(¢) s 6M¢ timelike
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¢ EOM becomes a constraint equation:
Fsgn(¢)3MiH =V,
e — limiting curvature

O
V2X

MIK=Vys, K=Vu', u,=%

® Incompressible perfect fluid

TuV:(P+P)UuUV+P9uu7 p:2XRX—P:V, p=P
2 _PXx _ Px

= =_— """ 300
* px Px+2XPxx
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e However, fluctuations do not propagate:

8gij = —2a%C6;; = 82 = / dtd3x a3 (gséQ fs(vg) )

X :
where  Gg=-——(Px +2XPxx)=0, Fs=-M}H/H?;

H

S(Z) _ dtd3 3 L2 % 9 _ _FS
scalar — Xa gS C *7(VC) Cg= - — 00

e But what happens if H = 0, e.g., through a bounce?
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Outline

© Introduction and motivation

® Cuscuton gravity with matter
® non-singular background
® cosmological perturbations — stable
® validity of gauges (e.g., when H = 0)
® behavior of perturbations (UV and IR)

® Extended cuscuton

@ Outlook
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Cuscuton gravity with matter

e Consider the addition of a massless scalar field

1
L= LgatM*V2X — V() =58u:x8"x

FRW 1. s . . 20
= 3M§1H2 = §X2 +V(9), 2Mp21H = —*FME|¢|

e Choose ‘—’ sign in Leuscuton
e NEC violation:

ME|9| > %> = 2MYH = —X* + M{|g| > 0
¢ Requirement for a bounce:

sgn(@)3MPH = Vg = 3M7H = V44|d|
V7¢¢ >0 = H >0
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Example of bouncing solution

e |et ¢ = 0 correspond to the bounce point. Then consider

V(§) = Vot im??, mP=Vys(é=0)>0

2
3M? - 1 o
Mo~y 3MPHP~ X +Vo,  2MPH= -y
- 3 M4 m2M? 3
2 _ L pl
Vo <0, M:M (1—2m2M21><0:> g, <5
1%

® Taylor series solution:

Vo o Vo -V
a(t)_a0<1+2M2t), H(t)_M2t, H_M2

e For full solution, see Boruah et al. (2018)
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Cosmological perturbations

e Consider the comoving gauge w.r.t. ¢, so d¢ = 0, but
x(t,x) = x(t) + 0x(t,x) and

ds® = —(1 + 2®)dt* + 2a0; Bdz'dt + a*(1 — 2¥)d;;dz’dx?

® Perturbed Hamiltonian and momentum constraints in Fourier space
(setting M, = 1):

(X*/2 — 3H?)®, + H(k/a)’ By + 3H Yy, + (k/a)* Ty, — X6Xk =0
2H Py, — 20, — oy =0

® — need to divide by H (in particular when H = 0) to eliminate ®y,
and By

— potential divergences
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e After simplification,

; H
Ss(ze)xlar = /dtd3k az® (Ck - C Ck) ) G =¥ — §5Xk,
where
22 Xk /a2 + 35%/2)
(k/a)2H? + x2(3H2 + H + x*/2)/2
— v —
=M3|¢|/2
H4k4 4 2 2 o
2 /CL +A2k /CL +A0k;i>1>0, /
H4k4/a4 + ng‘g/aQ + By

>0, vV

C

with
Ay =5%/2 (12H? + 30 +X%/2) + 2% — HH
Ap = (9’(2/2)2 (182 + 7 — x2/2) - 5/2 (12H%H - 202 + 3HH)
By = x2/2 (6H2 T H 4+ x2/2) , Bo =3 (>‘<2/2)2 (3H2 + H+>‘<2/2)
* Note, however,
L2k a2)'<2/H2 B20 o
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Switch gauge
e Spatially flat (I = 0):
B = 3 (Ge/H) + O(H®), aBf = G/ H + O(H?),

3xz = —xCe/H + O(H®), 865 = —pC/H + O(HP)
— ill defined at H =0

* Back to comoving gauge w.r.t. ¢ (6¢% = 0):

4
S

o7 @-4w“@ iﬁ?ﬁﬁp@+wﬂ)

3a2

M2k

VY = Hogy /= —G + O(H)

Xy = x5 — X085 /= — X ¢+ O(H)

aB,‘f = aB/,;q +5¢£/q§ =

Ck + O(H)
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e — divergences exactly cancel out to yield well-defined
perturbations at H = 0

— valid perturbed action £ = a-2(¢2 — c2k2¢2/a?)

e Comoving gauge w.r.t. x (oxX = 0):

0
o (5)- 4] 5] o

5x;
aBY = aBy + =& : _ZJK (%)JFOHO

xlf;g_Hé’;k:H< §k>+(9(H0)

s = 07~ 4 /M O(H")

—— all finite at H =0
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¢ Newtonian gauge (BY = 0):

d d
o =af+ giend) = () + 5 (5) + o)
Ck

Ul = —aHB = —le O(H?)
56N = 665 + adBS = —<z><’“ 4% 1+ O(H")
Sxr = Oxj +axBy = —ka + ka +O(H)

— all finiteat H =0
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So what really goes on close to H = 07

e Take the limit H — O first and then &k — oo

~0 4 H k2
ST 2 / ara + 2 )52 (v
M[% |¢’ Ck X2 a2 Ck: ( )

e — confirms that there is no divergence
® Sound speed when H = 0 (reinserting M):

k<«O(x 1 4m?2 M2 1 m2M?2
A 2L e (0,1 if <—2<1
3 3(3Mp —2m? M) 2 i
E>0(x) 4m2M2
2 a~
G~ L 2m2M2 ~ O(1 - 10)

e — superluminality near H ~ 0 for mid- to large-k modes
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Sound speed near the bounce

logo(k/Mpp
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Evolution of ¢, in the IR in a bounce phase

¢ The evolution of (i in the IR through a bounce phase links
perturbations from a contracting phase (scale invariant?) to the CMB

® Fork — 0,

tde

az?

54_(24—22)(_0 = ( = const. and C(t)oc/

e Can ¢ undergo significant amplification? Generally not the case, but if

s0, possibly important non-Gaussianities generated satarra et al. (2014), Jq et
al. (2015)

e In general, if z & a (constant EoS), then A¢ < (At
® Here,
2 k=0 3a2>'<2/M§1 2
Yy X2/2M2
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® One finds

Ae=¢ (1 + (1 — M2/M§1)HB/H3)

"\ 3 (M?/M2)Hp/H?

¢ Recalling
atlh 1/2,1 M2 1 Iy 2,-1/2
6 y — = —_ e =2, =
Mf (1/2,1] M§1 2m2M§1 ( /2

* — large wavelength curvature perturbations passing through a
bounce cannot receive more amplification than O(¢; At)
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Outline

© Introduction and motivation

@® Cuscuton gravity with matter
® non-singular background
® cosmological perturbations — stable
® validity of different gauges (e.g., when H = 0)
® behavior of perturbations (UV and IR)

® Extended cuscuton

@ Outlook
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Extended cuscuton

¢ Rather than starting with P(X, ¢), start with Horndeski or even
beyond-Horndeski theory, and impose iyonagaetal. (2018)
© the background EOM to be at most a first-order constraint equation
® and the kinetic term of scalar perturbations to vanish

— extended cuscuton D original cuscuton

e Alternatively, in the ADM formalism, one can construct a Hamiltonian,
satisfying the appropriate conditions for the theory to propagate at
most 2 gravitational d.o.f. and remaining invariant under 3-D
diffeomorphisms (but possibly breaking time diffeomorphism
invariance) Mukohyama & Noui (2019)

— minimally-modified gravity D extended cuscuton
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® As an example, consider the following:
SZSEH+/d4ZE\/—g< V2 V()‘u)@“)

+/d4m\/jg)\[ 32 (2X) +1n (%ﬁ)ﬂqﬁ

e FRW (pick ¢ > 0):

3M50% = > x + V(9)
2M20 = —x* + (M} + 6)0)d
6
3ME® =Vy— —V(8)
M2
where
©=H+ —qﬁ
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Cosmological perturbations

e Consider the spatially-flat gauge. The solution to the set of perturbed
Hamiltonian and momentum constraints read (M}, = 1)

¥ = = (xéx — (M3 + 6X0)8¢° + 2X5¢ )
o 3yl o)
+ & (g0 - ")

— potentially dangerous when © = 0
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e With o
(= —FSXS + 263 |

one finds 2
1 )
S = 5 /dtd3k az? (C}g - 6322(%)
where

2.2
a~x
2= 4x2 X2 _ ¢ >0,
02 + My %5 (55 +0) .
(M2+620) ((Mg +8XO)k2 /a2 +3M2 XT)

o Aug(k/a)t+ As(k/a)? + Ay a?
“ = Buk/a)' + Bo(k/a)® + Bo o ( ) >0

kQ
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What happens when © = 0?

® Apparent divergences actually exactly cancel out!

¢

5¢S:X+O(®)
s_ X X5 0
= 0x° = ®§+‘)\@5¢ =0(e")
o X 2, ;
— e M - 20 +00)

o Similarly,
°=0(@% and aB%=0(@"
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Take-home messages

e Cuscuton gravity is a limiting curvature theory (bounds the extrinsic
curvature)

e One can resolve cosmological singularities

e Cosmological perturbations are stable: no ghost and no gradient
instability

e Sound speed becomes superluminal, only in the UV and near the
bounce

e Curvature perturbations remain constant in the IR through a bounce

e Spatially-flat gauge ill defined at H = 0

® Diverences at H = 0 cancel out in other gauges

e Conclusions transpose to extended cuscuton model
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Future directions

S Strong coupling problem? de Rham & Melville (2017)
Non-Gaussianities? saetal. 015)

¢ Quantization and UV completion?

® New generalized limiting curvature? Instead of
n
£lim = Z SOZIZ(Riem7g7 V) - V(Spla sy ‘Pn)
i=1
consider

Lim =Y _ oili(K,h, D) = V(py, ..., 0n)
=1
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